The mating system was analysed in the upper and lower crown of two groups of European larch (Larix decidua Mill.) clones divided according to the percentage of full seeds in the upper and lower crown parts. The overall multilocus estimate of outcrossing rate (t) was calculated to be 0.929. The differences of outcrossing rates between crown levels and clonal groups respectively were not statistically significant. The t estimates were greater for the upper crown level and for clones with higher percentage of full seeds in the upper crown level. However, among all observations there was no correlation between outcrossing rates and percentages of full seeds for particular crown levels and groups of clones. Observed similarity of outcrossing among grafts of the same clones may indicate genetic control of self-fertilization rate in individual European larch.
The PDF includes an abstract in Finnish.
In Northern Finland as well as in Northern Sweden there is a shortage of high-quality Scots pine (Pinus sylvestris L.) seeds, mostly due to unsuitable temperatures during the development and maturation of cones and seeds. Methods have been developed for elimination of non-productive seeds and for invigoration of seeds. In the present work, these methods were tested on poorly developed seed lot from Rovaniemi, Northern Finland (66°15’–66°30’; 180 m a.s.l.). The seeds were conditioned using the following treatments:
1. PREVAC method (5 min, 97 kPa below atmospheric pressures) for removal of mechanically damaged seeds (7%)
2. Invigoration using incubation at controlled moisture content (30% f.w) and continuous air supply, for 14 days at 5°C.
3. Additional water supply for 16 hours at 5°C.
4. Drying in dehumidified air until a near maximum difference in density between viable and dead seeds was obtained
5. Separation in a sedimentation flume to achieve a gradient of fractions of different germination rate and capacity.
The treatments resulted in an improvement of germination percentage from 33 to about 95% and a reduction in mean germination time from 8.8 days to 6 days if the control and the best fractions (32% seeds) were compared.
Soft X-ray radiation (Grenz rays) has been used in the X-ray radiography of seeds. It is based on the principle that the different parts of the seed absorb X-rays to a slightly varying extent. Empty seeds and empty regions in the seeds appears as dark areas on the film. X-ray radiography without staining and X-ray contrast radiography were compared to study the stored seeds of Scots pine (Pinus sylvestris L.). The results were compared with the results of germination in a Jacobsen germinator according to ISTA norms.
Normal X-ray radiography gave too good estimates of germinative capacity of the seeds, and was shown to suit only when it is used to study fully ripe seeds which have recently been collected in an undamaged condition. The results of X-ray contrast radiography when barium chloride was used as the stain, however, followed closely the germination results.
The PDF includes a summary in Finnish.
This study, comprising three experiments, aims to determine the effect of the geographical origin of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) seeds, and the duration of the time lag between the moisture treatment and subsequent irradiation on the gamma-irradiation sensitivity of seeds.
The studies showed that the greater the irradiation dose seeds were subjected to the slower the rate of germination. In general, small radiation doses (250–1,000 rad) had a stimulating effect and the final germination percentage (36–40 days) increased. However, when the level was further increased, the germination percentage decreased. Air-dry and moistened seeds withstood irradiation better than others. In a study with moistened seeds from different geographical sources, pine and spruce seeds from Northern Finland were less able to withstand irradiation than those originating from the south.
The PDF includes a summary in English.
The study was carried out in order to find out the changes taking place in germination of seeds in certain tree species as a function of gamma irradiation, the height growth of the seedlings produced and the types of phenotypic mutants possibly found in the generation that had received radiation. The tree species studied were Pinus sylvestris L., Picea abies (L.) H. Karst., Betula verrucosa (Betula pendula Roth), B. Pubescens Ehrh., Alnus glutinosa (L.) Gaertn. and Alnus incana (L.) Moench.
Soaked seeds that had received a rather small dose of radiation germinated usually better than storage-dry seeds, B. pubescens being an exception. The damages observed in germination, height growth and the relative number of mutants were greater the higher the irradiation doses. The LD50 dose (germination, 28 days) was as follows in the case of the different tree species (storage dry/soaked): P. Sylvestris 1,500-2,000/2500-3,000, P. abies 1,000-1,500/4,000-4,500, B. pendula 9,500-10,000/7,000-7,500, B. pubescens >10,000/7,500-8,000 and A. Glutinosa 10,000/8,500-9,000 rad. Mass production of different mutants of deciduous trees for ornamental purposes, for example, appears to be easy using gamma-irradiation. On the other hand, the possibility of increasing tree growth remains open for further study.
The PDF includes a summary in English.
The aim of the present study was to collect information presented in literature concerning the development and germination of the seeds of coniferous trees with special reference to those species which thrive in the conditions prevailing in Finland. Along with the increase in the importance of direct seeding as a silvicultural means in Northern Finland, there is a growing demand for methods by means of which the germination of seeds could be promoted. According to the results obtained from previous studies, such a method can be found, provided that a practically usable and reliable pre-germination method is developed.
The PDF includes a summary in English.
This paper reports spot sowing experiments of Scots pine (Pinus sylvestris L.). The seeds were either covered with coarse sand, tramped in the substrate or sowed without any covering, 30 seeds in each treatment in 70 replications. The site was of Vaccinium type with sandy soil. The germination percentage was 81 and 91 on the respective years. The development of seedlings was observed for 3–4 years.
The results indicate that both tramping and covering the seeds to some extent increased the number of seedlings and improved the early development. The highest numbers of seedlings were recorded in the first growing season, after which there was 23 seedlings/100 seeds in the uncovered spots, 27 seedlings in the covered spots and 31 seedlings in the tramped spots in the experiment sowed in 1965.
Mortality of the seedlings was highest between the first and second growing season, and empty spots increased with the time. There was no difference in mortality between the sowing methods, but the number of seedlings after first growing season affected the result. Under favourable conditions four seedlings per spot seemed enough to secure the survival of minimum one seedling per spot during the three first growing seasons. In poor conditions seven seedlings was needed.
The PDF includes a summary in English.
The aim of the study was to establish how the cold storage of cones of Norway spruce (Picea abies (L.) H. Karst.) affects the viability of the seeds and the percentage ratio in 7 days. A parallel study was made of the longevity of seed in barn-stored cones subject to weather fluctuations and the longevity of seed extracted immediately and stored in the conventional way in an air-tight container. The cones were collected near Kuopio in Central Finland and near Tampere.
The viability and germination rate of the control sample was constant throughout the storage period. This storage method proved the best. The viability of seeds kept in cones declined in cold storage after 3 ½ months. The cones collected in Tampere were damaged by Laspeyresia strobilella, which affected the viability of the seeds.
The viability of seeds stored in cones in a barn had not weakened by the end of May, however, they deteriorated during the summer, as did the seeds stored in cones in the cold storage. Viability of the seeds was still 94% in October. The germination rate was constant in each lot up to the end of May, after which it decreased to 81.7–86.1% in October.
The results show that healthy spruce cones can be stored in paper sacks in a single layer in cold storage and in an ordinary barn for several months without it affecting the viability of the seeds.
The PDF includes a summary in English.
The aim of this study was to establish the need of treatment of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) seeds to be sown in greenhouse. 3 x 100 seeds of each treatment (soaking in water, treatment with Pb3O4, treatment with tiram-containing coating substance) were sown in a glasshouse on a fertilized garden peat, and covered with peat layer of 6 mm thickness. The development of seedlings was followed for 100 days before the final measurement.
Soaking the seeds with water made germination somewhat faster. In spruce the germination percentage increased, but the opposite was observed in pine. No difference could be observed between the results from soaking with acid water from peat soil and lake water. Drying the soaked seeds for a week before sowing had no harmful influence on the germination or the early development of the seedlings. Treatment with Pb3O4 did not affect the germination speed or the seedling percentage of pine or spruce, but increased the germination percentage of spruce. Coating decreased germination and seedling percentages in pine. However, the differences between the treatments were so small that their practical significance is negligible.
Germination of both the species initiated on an average in 8 days, and 16 days after sowing 80% of the seeds had germinated. Seedling mortality was about 10% of the total number of seedlings, the most common reason being damping-off.
The PDF includes a summary in English.
Seed storing experiments with cones of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) were conducted in Oitti seed extracting plant in Southern Finland from February to December 1955. The pine cones were stores for 267 and the spruce coned for 304 days. In four of the storage methods the cones were packed in sacks and another four in wooden boxes. Sample of cones were taken once a month, seeds were extracted and the germinative capacity was tested. The remaining extracted seeds were placed in storage, and in January 1956 moved to cold seed cellar until 1962, when the viability of the seeds was tested.
According to the results, cleaned pine cones can be stores for at least nine months using almost all methods of storage which are commonly used at our seed traction plants, without hazarding the usability of the seeds. The seeds in spruce cones, however, seemed to be more sensitive to conditions during the storage. The germinative capacity of the spruce seeds began to decrease after the beginning of May. Later the seeds were infected with mould, which increased towards the end of the experiment.
Thus, preservation of the germinative capacity of the seeds of pine and spruce requires storage in different conditions. The results suggest that extraction of spruce seeds should be finished during the cold winter months. It seems that seed in the cones of pine and spruce endure storage in piles of paper or cloth sacks at least as well as in wooden boxes. Occasional warming of the storage, snow and foreign material among the cones and an over meter thick cone layer decreased the germinative capacity of spruce seeds during spring and summer. Spruce seeds that had been extracted immediately after collecting of the cones preserved their germinative capacity well during an eight years storage period.
The PDF includes a summary in English.
Prescribed burning has been used in regeneration areas in Finland as a method to treat the humus layer and creating more favourable chemical, physical and biological conditions for the seedlings. At the same time, fire clears away seedlings and shoots of unwanted trees and other vegetation. Direct sowing or planting, mostly Scots pine (Pinus sylvestris L.), seldom natural regeneration, is used. In this paper, the initial stages of the formation of a new tree generation of Scots pine and Norway spruce (Picea abies (L.) Karst.) on prescribed burned areas is studied in Central Finland in 1956–1960.
The burned area remains almost without vegetation for about two growing seasons. Conditions on a burned area which has not been tiled are very unfavourable for germination of seeds of coniferous and deciduous trees. On the other hand, shoots of deciduous trees occur soon after burning. Conditions for regeneration were found to be better 3–5 years after burning. Removal of humus layer in spots improved regeneration. However, the patches facilitated also natural regeneration of Norway spruce and especially birch (Betula sp.), which compete with Scots pine seedlings.
Continuous rainy periods improved the germination of Scots pine and Norway spruce seeds sown on the humus layer. Pine and spruce developed more rapidly on the exposed soil, however, young seedlings were easily destroyed. Seed eaters destroyed the pine and spruce seeds sown on the humus layer of newly burned areas completely or almost completely. The viability of pine seeds sown on the burned humus layer did not decrease for three weeks, but the viability greatly weakened after six or more weeks. Spruce seeds lost their viability faster than pine seeds.
The PDF includes a summary in Finnish.
This paper deals with two machines designed for abrading seed wings, and their influence on the germinative capacity of seed of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.). Both machines are commonly used in Finland.
The results of the study indicate that the act of abrading may cause slight or even serious injuries to the seed. Slight injuries of about 3% are probably not easily avoided if mechanical abrading is resorted to. It must be noted, however, that even this reduction in germinative capacity causes significant yearly loss. If the reduction in germinative capacity is greater, which seems to be possible, it is advisable to test the mechanism of the machine and its method of abrading. As the clearance of the machines can affect the extent of injuries, all machines should be tested. If possible, a continual operation control should be arranged. It could, at the same time, to supply material for improving the abrading method and equipment.
The PDF includes a summary in English.
Germlings and small tree seedlings are exposed to extreme conditions in the forest floor. In this study the influence of climatic factors to seeds and seedlings were studied experimentally, and an attempt was made to estimate the importance of various factors in several sowing experiments in Finland.
Seeds of Scots pine (Pinus sylvestris L.) were subjected to temperature variations which simulated those of exposed forest sites. The seeds lost some of their germinative capacity during the five-day treatments. Succulent seedlings died when subjected to immersion for 15 minutes at temperatures from 51.5 to 55 ºC. After a hardening pretreatments the seedlings tolerated 2-3 ºC higher temperatures. In artificial humus soil exposed to strong insolation for 15 minutes, temperatures in the range of 54-65 ºC proved to be critical for the seedlings. In natural conditions, also little lower temperatures may prove fatal. Exposure of succulent seedlings of Scots pine and Norway spruce (Picea abies (L.) Karst.) to insolation showed that most damage occurred on humus, quartz sand, and humus-sand mixture, due to rapid evaporation. Seeds of Scots pine, Norway spruce, Betula pendula and Betula pubescens tolerated poorly drought if germination had progressed to a 5–10 mm long radicle. Succulent seedlings tolerated 53-77 days long drought better in humus than in fine silty sand. Seedlings of Pinus sylvestris, Picea abies, Alnus incana and A. glutinosa tolerated cold variably. The developmental stage of the seedling affected cold resistance. Pine seeds sown in furrows germinated well after rain and the survival was high. Frost heaving, snail and insects caused some damages. Germination was lowest at the shallowest furrows. Sowing on natural surfaces gave poor results. Largest damages were caused by birds and ants.
The PDF includes a summary in Finnish.
Planning of large central tree nurseries, which has become topical in Finland, means that the seedlings will be used in a wide geographical area. The nursery must decide which proveniences of seeds of the different tree species it will use. This concerns also the customer that buys the seedlings. The planting and lifting of the seedlings in the nursery have to be timed so that the seedlings are in a right state of growth at the time of planting.
The growth of the seedlings can, under certain conditions, be promoted by using a slightly southerly seed provenience, and large-sized seeds. There are, however, limitations to how much the seeds can be transferred northwards. If the nursery lies much south of the planting site, the seedlings have started height growth at the time of planting. This applies especially larch (Larix sp.), Scots pine (Pinus sylvestris L.) and birch (Betula sp.), but affects less Norway spruce (Picea abies (L.) Karst.). The problem can be handled by using a cool storage space for the seedlings waiting for a delivery in the nursery.
According to an international study, seedlings grown from seeds collected in countries south from Finland usually die already during the first two years in the nursery. Within Finland the seeds can be transferred at least by two latitudes. Spruce seems to tolerate longer transfer. Seed orchards should be planted south of the seed’s origin to ensure better yield and better quality seeds.
The Silva Fennica issue 61 was published in honour of professor Eino Saari‘s 60th birthday.
The PDF includes a summary in German.
Temperatures needed in extracting Scots pine (Pinus sylvestris L.) seeds is relatively high, however, there is little information on its effect on germination of the seeds. This survey aimed at studying how different temperatures affect both extraction result and germination of Scots pine seeds. Comparisons between different temperatures (20, 30, 40, 50, 60 and 70 ºC) were made from cones collected from same sample trees, three trees in total.
Temperatures 20 and 30 ºC resulted in incomplete opening of the cones, and gave thus smaller amount of seeds. Complete extraction requires at the least the temperature of 40 ºC. The result is slightly better in 50 ºC, but germination of the seeds is little lower. Temperatures 60 and 70 ºC improve the results, but in the cost of germination. The main reason for lower germination percentage was that the higher temperatures release more empty and defective seeds from the cones. Results of different sample trees were different due to, for instance, quality and size of cones. Higher temperatures accelerated the extraction. According to the study, perfect extraction in 40 ºC requires longer extraction time than when the temperature of 50 ºC is used. In practice, 50 ºC temperature or even little higher temperatures can be used when the extraction time is shorter. Decessive factors in choosing the temperature would be the humidity of cones and length of extraction time.
The PDF includes a summary in German.
The genus Betula L. is composed of several species, which are difficult to distinguish in the field on the basis of morphological traits. The aim of this study was to evaluate the taxonomic importance of using visible + near infrared (Vis + NIR) spectra of single seeds for differentiating Betula pendula Roth and Betula pubescens Ehrh. Seeds from several families (controlled crossings of known parent trees) of each species were used and Vis + NIR reflectance spectra were obtained from single seeds. Multivariate discriminant models were developed by Orthogonal Projections to Latent Structures – Discriminant Analysis (OPLS-DA). The OPLS-DA model fitted on Vis + NIR spectra recognized B. pubescens with 100% classification accuracy while the prediction accuracy of class membership for B. pendula was 99%. However, the discriminant models fitted on NIR spectra alone resulted in 100% classification accuracies for both species. Absorption bands accounted for distinguishing between birch species were attributed to differences in color and chemical composition, presumably polysaccharides, proteins and fatty acids, of the seeds. In conclusion, the results demonstrate the feasibility of NIR spectroscopy as taxonomic tool for classification of species that have morphological resemblance.