Current issue: 58(3)

Under compilation: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'correlation'

Category : Article

article id 5605, category Article
Matti Haapanen, Marja-Leena Annala, Pirkko Velling. (1997). Progeny trial estimates of genetic parameters for growth and quality traits in Scots pine. Silva Fennica vol. 31 no. 1 article id 5605. https://doi.org/10.14214/sf.a8506
Keywords: Pinus sylvestris; Scots pine; wood quality; genetic correlation; heritability; progeny testing
Abstract | View details | Full text in PDF | Author Info

Estimates of individual heritability and genetic correlation are presented for a set of 10 growth and quality traits based on data from 16 Scots pine (Pinus sylvestris L.) progeny trials in Finland. Seven of the traits (tree height, stem diameter, crown width, Pilodyn value, branch diameter, branch angle and branch number) were objectively measured, whereas three traits (stem straightness, branching score and overall score) were assessed visually. The genetic correlations were mostly moderate or low, and favourable from the tree breeder's point of view. All variables related to tree size correlated relatively strongly and positively. Tree height exhibited a more favourable genetic relationship with the crown form traits than diameter, the latter showing positive correlation with branch diameter. Except for the slight negative correlation between branch angle and branch diameter, the branching traits were not notably correlated. The pilodyn value was positively correlated with stem diameter, reflecting negative correlation between diameter growth and wood density. The highest genetic correlations occurred among the two visually evaluated quality scores and branch diameter. All of the heritabilities were less than 0.4. Overall score, Pilodyn, branch angle, branching score and tree height showed the highest heritability.

  • Haapanen, E-mail: mh@mm.unknown (email)
  • Annala, E-mail: ma@mm.unknown
  • Velling, E-mail: pv@mm.unknown
article id 5444, category Article
Kari T. Korhonen, Matti Maltamo. (1991). The evaluation of forest inventory designs using correlation functions. Silva Fennica vol. 25 no. 2 article id 5444. https://doi.org/10.14214/sf.a15598
Keywords: forest inventories; correlation analysis; correlograms; sampling error; spatial correlation,
Abstract | View details | Full text in PDF | Author Info

Correlation functions of the mean volume, land use class and soil class were estimated using the data of the Finnish National Forest Inventory. Estimated functions were used for approximating the standard error of e.g. the mean volume of a cluster of plots. Standard error estimates can be used for comparing different inventory designs.

The PDF includes an abstract in Finnish.

  • Korhonen, E-mail: kk@mm.unknown (email)
  • Maltamo, E-mail: mm@mm.unknown

Category : Article

article id 7085, category Article
Yrjö Ilvessalo. (1923). Paper on the correlation between the characteristics of the soil and the growth of forest stand. Acta Forestalia Fennica vol. 25 no. 10 article id 7085. https://doi.org/10.14214/aff.7085
Keywords: site quality; nitrogen; soil; correlation; lime; forest stand; calcium
Abstract | View details | Full text in PDF | Author Info

The study is based on the results of the soil studies by Valmari (1921) and the growth inventories of respective areas. The aim is to show the connection of soil fertility (nutrient content) and forest growth with means of correlation calculations. The examined nutrients were nitrogen, calcium and phosphorus, also the electrolyte content was studied.

The results show that with increase of nitrogen content of the soil the growth of pine stand increases as well. The correlation is clearly identified. The number of birch and spruce stands is too small for systematic review. For calcium there is a similar kind of relation. With phosphorus content or amount of electrolytes the correlation with doesn’t exist. Also the loss on ignition test was conducted. The relation found is somewhat weak.
  • Ilvessalo, E-mail: yi@mm.unknown (email)

Category : Research article

article id 22026, category Research article
Annika Kangas, Mari Myllymäki, Lauri Mehtätalo. (2023). Understanding uncertainty in forest resources maps. Silva Fennica vol. 57 no. 2 article id 22026. https://doi.org/10.14214/sf.22026
Keywords: autocorrelation; ensemble modelling; kriging; quantile; random forest; sequential Gaussian simulation
Highlights: Forest resources maps without uncertainty assessment may lead to false impression of precision; Suitable tools for visualization of map products are lacking; Kriging method provided accurate uncertainty assessment for pixel-level predictions; Quantile random forest algorithm slightly underestimated the pixel-level uncertainties; With simulation it is possible to assess the uncertainty also for landscape-level characteristics.
Abstract | Full text in HTML | Full text in PDF | Author Info
Maps of forest resources and other ecosystem services are needed for decision making at different levels. However, such maps are typically presented without addressing the uncertainties. Thus, the users of the maps have vague or no understanding of the uncertainties and can easily make wrong conclusions. Attempts to visualize the uncertainties are also rare, even though the visualization would be highly likely to improve understanding. One complication is that it has been difficult to address the predictions and their uncertainties simultaneously. In this article, the methods for addressing the map uncertainty and visualize them are first reviewed. Then, the methods are tested using laser scanning data with simulated response variable values to illustrate their possibilities. Analytical kriging approach captured the uncertainty of predictions at pixel level in our test case, where the estimated models had similar log-linear shape than the true model. Ensemble modelling with random forest led to slight underestimation of the uncertainties. Simulation is needed when uncertainty estimates are required for landscape level features more complicated than small areas.
  • Kangas, Natural Resources Institute Finland (Luke), Bioeconomy and environment, Yliopistokatu 6, 80101 Joensuu, Finland ORCID https://orcid.org/0000-0002-8637-5668 E-mail: annika.kangas@luke.fi (email)
  • Myllymäki, Natural Resources Institute Finland (Luke), Bioeconomy and environment, Latokartanonkaari 9, FI-00790 Helsinki, Finland ORCID https://orcid.org/0000-0002-2713-7088 E-mail: mari.myllymaki@luke.fi
  • Mehtätalo, Natural Resources Institute Finland (Luke), Bioeconomy and environment, Yliopistokatu 6, 80101 Joensuu, Finland ORCID https://orcid.org/0000-0002-8128-0598 E-mail: lauri.mehtatalo@luke.fi
article id 7738, category Research article
Samuel Egbäck, Bo Karlsson, Karl-Anders Högberg, Kenneth Nyström, Mateusz Liziniewicz, Urban Nilsson. (2018). Effects of phenotypic selection on height-diameter ratio of Norway spruce and Scots pine in Sweden. Silva Fennica vol. 52 no. 2 article id 7738. https://doi.org/10.14214/sf.7738
Keywords: Pinus sylvestris; Picea abies; genetic correlations; heritability; Genetic selection; slenderness
Highlights: Swedish plus-tree selection promoted less slender Norway spruce trees and more slender Scots pine trees compared to neighboring trees; Similar results were also found for progeny trials which indicated that genetics played a prominent role in phenotypic appearance.
Abstract | Full text in HTML | Full text in PDF | Author Info

Genetically improved Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) are extensively used in operational Swedish forestry plantations. However, relatively little is known about the stem slenderness (height-diameter ratio) of genetically improved material. Thus, in this study we investigated effects of plus-tree selection on stem slenderness of Norway spruce and Scots pine in Sweden by evaluating both the plus-tree selection and a large number of progeny trials. Species-specific models for predicting the height-diameter ratio were estimated using regression and mixed model approach. Our results show that phenotypic plus-tree selection promoted less slender Norway spruce trees and more slender Scots pine trees compared to neighboring trees. Similar results were also found for the progeny trials which indicated that genetics played a prominent role in the phenotypic appearance. Compared to the progeny of neighboring trees, Norway spruce plus-tree progenies had a 5.3% lower height-diameter ratio, while Scots pine plus-tree progenies had a 1.5% greater height-diameter ratio. The narrow sense heritability for height-diameter ratio was 0.19 for Norway spruce and 0.11 for Scots pine, indicating that it is possible to modify the height-diameter ratio by breeding. Correlation coefficients between breeding values for height-diameter ratio and diameter were negative for Scots pine (–0.71) and Norway spruce (–0.85), indicating that selection for diameter only would result in less slender stems of both species. Similar correlations were also found between breeding values for height-diameter ratio and height of Scots pine (–0.34) and Norway spruce (–0.74).

  • Egbäck, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, 230 53 Alnarp, Sweden E-mail: samuel.egback@slu.se (email)
  • Karlsson, Skogforsk, Ekebo, 268 90 Svalöv, Sweden E-mail: bo.karlsson@skogforsk.se
  • Högberg, Skogforsk, Ekebo, 268 90 Svalöv, Sweden E-mail: karl-anders.hogberg@skogforsk.se
  • Nyström, Swedish University of Agricultural Sciences, Department of Forest Resource Management, Skogsmarksgränd, 901 83 Umeå, Sweden E-mail: kenneth.nystrom@slu.se
  • Liziniewicz, Skogforsk, Ekebo, 268 90 Svalöv, Sweden E-mail: Mateusz.Liziniewicz@skogforsk.se
  • Nilsson, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, 230 53 Alnarp, Sweden E-mail: urban.nilsson@slu.se
article id 7743, category Research article
Sakari Tuominen, Timo Pitkänen, Andras Balazs, Annika Kangas. (2017). Improving Finnish Multi-Source National Forest Inventory by 3D aerial imaging. Silva Fennica vol. 51 no. 4 article id 7743. https://doi.org/10.14214/sf.7743
Keywords: forest inventory; remote sensing; spatial autocorrelation; spatial distribution; aerial imagery; stereo-photogrammetry
Highlights: 3D aerial imaging provides a feasible method for estimating forest variables in the form of thematic maps in large area inventories; Photogrammetric 3D data based on aerial imagery that was originally acquired for orthomosaic production was tested in estimating stand variables; Photogrammetric 3D data highly improved the accuracy of forest estimates compared to traditional 2D remote sensing imagery.
Abstract | Full text in HTML | Full text in PDF | Author Info

Optical 2D remote sensing techniques such as aerial photographing and satellite imaging have been used in forest inventory for a long time. During the last 15 years, airborne laser scanning (ALS) has been adopted in many countries for the estimation of forest attributes at stand and sub-stand levels. Compared to optical remote sensing data sources, ALS data are particularly well-suited for the estimation of forest attributes related to the physical dimensions of trees due to its 3D information. Similar to ALS, it is possible to derive a 3D forest canopy model based on aerial imagery using digital aerial photogrammetry. In this study, we compared the accuracy and spatial characteristics of 2D satellite and aerial imagery as well as 3D ALS and photogrammetric remote sensing data in the estimation of forest inventory variables using k-NN imputation and 2469 National Forest Inventory (NFI) sample plots in a study area covering approximately 5800 km2. Both 2D data were very close to each other in terms of accuracy, as were both the 3D materials. On the other hand, the difference between the 2D and 3D materials was very clear. The 3D data produce a map where the hotspots of volume, for instance, are much clearer than with 2D remote sensing imagery. The spatial correlation in the map produced with 2D data shows a lower short-range correlation, but the correlations approach the same level after 200 meters. The difference may be of importance, for instance, when analyzing the efficiency of different sampling designs and when estimating harvesting potential.

  • Tuominen, Natural Resources Institute Finland (Luke), Economics and Society, P.O. Box 2, FI-00791 Helsinki, Finland E-mail: sakari.tuominen@luke.fi (email)
  • Pitkänen, Natural Resources Institute Finland (Luke), Economics and Society, P.O. Box 2, FI-00791 Helsinki, Finland E-mail: timo.p.pitkanen@luke.fi
  • Balazs, Natural Resources Institute Finland (Luke), Economics and Society, P.O. Box 2, FI-00791 Helsinki, Finland E-mail: andras.balazs@luke.fi
  • Kangas, Natural Resources Institute Finland (Luke), Economics and Society, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: Annika.Kangas@luke.fi
article id 1140, category Research article
Miguel Fabra Crespo, Olli Saastamoinen, Jukka Matero, Hannes Mäntyranta. (2015). Perceptions and realities: public opinion on forests and forestry in Finland, 1993–2012. Silva Fennica vol. 48 no. 5 article id 1140. https://doi.org/10.14214/sf.1140
Keywords: values; correlation; attitude; reflexive groups; social evolution
Highlights: Analysis of the longest-running survey in the world on public perceptions of forestry; Comparison of perceptions with realities in forestry in Finland; The role of the forests and their management is well regarded by the Finns; More protection of the forests and better performance by the wood industry is demanded.
Abstract | Full text in HTML | Full text in PDF | Author Info
The perception of the Finns about forests and forestry has been tracked over a period of more than 15 years. The results of this survey constitute the longest sequence of data of this type at the national level anywhere in the world. The people’s perception of reality represents a factor that influences decisions about policy. For this reason, it deserves monitoring and analysis. Forests in Finland are highly meaningful to the people, who are generally well informed and link their opinions to the facts that they are able to observe. The variability of the responses over the years of the survey is not significant. Silviculture and forest management are perceived as good by most Finns. Finns are aware that more forest grows than is harvested, and they also know that some raw material is still imported. However, they demand that more forest be protected. Finns are aware that their forest industry is not performing well at the international level. They also demand an increased wood supply for building construction. Forest harvesting is viewed as a source of employment and welfare.
  • Fabra Crespo, School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: mfabracrespo@yahoo.com (email)
  • Saastamoinen, School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: olli.saastamoinen@uef.fi
  • Matero, School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: materojukka@gmail.com
  • Mäntyranta, Finnish Forest Association, Salomonkatu 17 A, FI-00100 Helsinki, Finland E-mail: hannes.mantyranta@smy.fi
article id 907, category Research article
Chunyu Zhang, Yazhou Zhao, Xiuhai Zhao, Klaus von Gadow. (2012). Species-habitat associations in a northern temperate forest in China. Silva Fennica vol. 46 no. 4 article id 907. https://doi.org/10.14214/sf.907
Keywords: species richness; spatial autocorrelation; dispersal limitations; indicator species; topographic differentiation
Abstract | View details | Full text in PDF | Author Info
This contribution identifies species-habitat associations in a temperate forest in north-eastern China, based on the assumption that habitats are spatially autocorrelated and species are spatially aggregated due to limited seed dispersal. The empirical observations were obtained in a large permanent experimental area covering 660 x 320 m. The experimental area was subdivided into four habitat types using multivariate regression tree (MRT) analysis. According to an indicator species analysis, 38 of the 47 studied species were found to be significant indicators of the MRT habitat types. The relationships between species richness and topographic variables were found to be scale-dependent, while the great majority of the species shows distinct habitat-dependence. There are 188 potential species-habitat associations, and 114 of these were significantly positive or negative based on habitat randomization. We identified 139 significant associations using a species randomization. A habitat is not a closed system it may be both, either a sink or a source. Therefore, additional to the randomization, the Poisson Cluster Model (PCM) was applied. PCM considers the spatial autocorrelation of species and habitats, and thus appears to be more realistic than the traditional randomization processes. It identified only 37 associations that were significant. In conclusion, the deviation from the random process, i.e. the high degree of species spatial mingling may be explained by persistent immigration across habitats.
  • Zhang, Key Laboratory for Forest Resources & Ecosystem Processes of Beijing, Beijing Forestry University, Beijing 100083, China E-mail: zcy_0520@163.com (email)
  • Zhao, Department of Landscape Architecture, School of Architecture, Tsinghua University, Beijing 100084, China E-mail: yz@nn.cn
  • Zhao, Key Laboratory for Forest Resources & Ecosystem Processes of Beijing, Beijing Forestry University, Beijing 100083, China E-mail: xz@nn.cn
  • von Gadow, Faculty of Forestry and Forest Ecology, Georg-August-University Göttingen, Büsgenweg 5, D-37077 Göttingen, Germany E-mail: KGadow@gwdg.de
article id 89, category Research article
Russell Grenfell, Tuomas Aakala, Timo Kuuluvainen. (2011). Microsite occupancy and the spatial structure of understorey regeneration in three late-successional Norway spruce forests in northern Europe. Silva Fennica vol. 45 no. 5 article id 89. https://doi.org/10.14214/sf.89
Keywords: boreal forest; disturbance; microsite; spatial correlation; stand structure; natural forest
Abstract | View details | Full text in PDF | Author Info
We compared microsite occupancy and three spatial structure of regeneration in three primeval late-successional Norway spruce dominated forests. One area lay in the middle boreal zone in Russia (Dvina-Pinega) where larger-scale disturbance from bark beetles and drought had occurred; the other areas lay in the northern boreal zone, one in Finland (Pallas-Ylläs) had encountered only small-scale disturbance, and one in Russia (Kazkim) had been influenced by fire. We mapped all spruce (Picea abies) and birch (Betula pendula and Betula pubescens) trees with diameter at breast height (DBH) ≥ 10 cm on 40 m 400 m plots, and those with DBH < 10 cm on 2 m or 4 m 400 m subplots. On the subplots we also recorded microsite occupancy and estimated microsite availability. At all study areas small seedlings (h < 0.3 m) of both spruce and birch were found largely on disturbance-related microsites. Birch saplings (h ≥ 1.3 m, DBH < 10 cm) disproportionately occupied deadwood-related microsites at Dvina-Pinega. In contrast, spruce saplings at all study areas, and birch saplings at Kazkim and Pallas-Ylläs, showed less, or no, preference. Our results thus confirm the importance of disturbance-related microsites for regeneration establishment, but not necessarily for long-term survival. No spatial segregation between the overstorey (DBH ≥ 10 cm) and saplings (h ≥ 1.3 m, DBH < 10 cm) or seedlings (h < 1.3 m) was found at Pallas-Ylläs or Kazkim, and only three instances of very weak segregation were found at Dvina-Pinega. This suggests that the regeneration gap concept may not be useful for describing the regeneration dynamics of primeval boreal forests.
  • Grenfell, University of Helsinki, Dept of Forest Sciences, Helsinki, Finland E-mail: russell.grenfell@helsinki.fi (email)
  • Aakala, University of Helsinki, Dept of Forest Sciences, Helsinki, Finland E-mail: ta@nn.fi
  • Kuuluvainen, University of Helsinki, Dept of Forest Sciences, Helsinki, Finland E-mail: tk@nn.fi
article id 152, category Research article
Torgny Persson, Bengt Andersson, Tore Ericsson. (2010). Relationship between autumn cold hardiness and field performance in northern Pinus sylvestris. Silva Fennica vol. 44 no. 2 article id 152. https://doi.org/10.14214/sf.152
Keywords: Scots pine; cold hardiness; genetic coefficient of variation; genetic correlation; multivariate analysis; narrow-sense heritability
Abstract | View details | Full text in PDF | Author Info
Results from 3 artificial freezing tests (one-year-old seedlings) and 15 field trials (9- to 21-year old trees) of half-sib offspring from first generation Scots pine (Pinus sylvestris L.) plus-trees were used to estimate the amount of additive genetic variance for autumn cold hardiness and traits assessed in the field, and the genetic correlations between them. Cold hardiness of individual seedlings was scored visually, based on the discoloration of their needles after freezing in a climate chamber. The field traits analyzed were tree vitality, tree height, spike knot frequency, branch diameter, branch angle, stem straightness, and susceptibility to infection by the pathogenic fungi Phacidium infestans L., Gremmeniella abietina (Lagerb.) Morelet, Melampsora pinitorqua (Braun) Rostr. and Lophodermella sulcigena (Rostr.) Höhn. Narrow sense individual heritabilities varied between 0.30 and 0.54 for autumn cold hardiness, 0 and 0.18 for tree vitality, 0.07 and 0.41 for tree height, and 0.01 and 0.26 for the remaining traits. Based on the results of the artificial freeze tests, our estimates of additive genetic correlations indicate that while early selection for cold hardiness can improve seedling survival rates in the field, it may also reduce growth in mild environments. It also has minor effects on quality traits and attack by common fungal diseases. The results indicate that artificial freeze testing is an appropriate method for identifying suitable clones for establishing seed orchards to supply stock for the reforestation of regions with harsh environments.
  • Persson, Forestry Research Institute of Sweden, Sävar, Sweden E-mail: torgny.persson@skogforsk.se (email)
  • Andersson, Forestry Research Institute of Sweden, Sävar, Sweden E-mail: ba@nn.se
  • Ericsson, Forestry Research Institute of Sweden, Sävar, Sweden E-mail: te@nn.se
article id 460, category Research article
Hong Ling, Sandhya Samarasinghe, G. Don Kulasiri. (2009). Modelling variability in full-field displacement profiles and Poisson ratio of wood in compression using stochastic neural networks. Silva Fennica vol. 43 no. 5 article id 460. https://doi.org/10.14214/sf.460
Keywords: wood; digital image correlation; displacement profiles; variability; micro structure; stochastic neural networks; Poisson ratio
Abstract | View details | Full text in PDF | Author Info
Vertical and horizontal displacement profiles in compression parallel-to-grain in a 20 x 20 mm area (30 x 21 or 630 points) in the Tangential–Longitudinal (T–L) and Radial Longitudinal (R–L) sections of small wood columns were obtained from digital image correlation applied to simultaneously captured images of the two surfaces. These consisted of 21 displacement realisations of 30 points along the length of the specimen. They revealed considerable local variations. Stochastic neural networks were successfully developed to simulate trends and noise across and along a specimen in both displacements as well as Poisson ratios in T–L and R–L sections for two selected load levels of 20kN and 40kN. These networks specifically embed noise characteristics extracted from data to generate realistic displacement and Poisson ratio realisations with inherent variability. Models were successfully validated using independent data extracted based on bootstrapping method with high accuracy with R2 ranging from 0.79 to 0.91. The models were further validated successfully using a second approach involving Confidence Intervals generated from the data extracted from the models. Models and experimental results revealed that for 20kN load, both vertical and horizontal displacements in T–L section were less heterogeneous across the specimen (smaller vertical shearing and horizontal strain, respectively) than those in the R–L section. For the 40kN load, both displacement profiles in the T–L section were less noisy and more compact than those for the 20kN load indicating less heterogeneity due to compaction of structure. In the R–L section, larger vertical shearing and horizontal strains persisted at 40 kN load. Poisson ratio decreased with load and it was nonlinear in both sections but T–L section showed much less noise across the specimen than the R–L section.
  • Ling, Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Canterbury, New Zealand E-mail: hl@nn.nz
  • Samarasinghe, Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Canterbury, New Zealand E-mail: sandhya.samarasinghe@lincoln.ac.nz (email)
  • Kulasiri, Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Canterbury, New Zealand E-mail: gdk@nn.nz
article id 192, category Research article
Heli Peltola, Jaume Gort, Pertti Pulkkinen, Ane Zubizarreta Gerendiain, Jouni Karppinen, Veli-Pekka Ikonen. (2009). Differences in growth and wood density traits in Scots pine (Pinus sylvestris L.) genetic entries grown at different spacing and sites. Silva Fennica vol. 43 no. 3 article id 192. https://doi.org/10.14214/sf.192
Keywords: genetic entry; stem volume; height; diameter; wood property traits; phenotypic correlation
Abstract | View details | Full text in PDF | Author Info
In forest breeding, stem volume has typically taken as the most important selection trait, whereas less attention has been given to wood density traits. In this work, we investigated the effects of spacing and genetic entry on the growth, yield and wood density traits in 20 year old Scots pines (Pinus sylvestris L.) based on 10 genetic entries harvested from a spacing trial (stand density range 2000–4000 trees/ha) in central Finland. In order to study also the site effects, we harvested additional material from a trial located in southern Finland (stand density of 2000 trees/ha). Compared to growth and yield properties, wood density traits showed a lower phenotypic variation. Phenotypic correlations among different traits were negative, and mostly moderate to high, suggesting that selection for one trait would simultaneously affect the others. In addition, moderate to strong phenotypic correlations were found among different wood density traits. Stem volume (V) and breast height diameter (DBH) were the largest in widest spacing, whereas in the densest one tree height (H) and latewood percentage were the highest. Genetic entry affected H and wood density traits regardless of spacing. When comparing two sites (with same stand density), genetic entry affected H, whereas site affected DBH and wood density traits. Ranking between genetic entries changed depending on the trait, spacing or site considered. Therefore, no overall ranking was possible. However, we could identify genetic entries having a high V and a relatively high wood density, showing potential for future forest regeneration material.
  • Peltola, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail: heli.peltola@joensuu.fi (email)
  • Gort, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail: jg@nn.fi
  • Pulkkinen, Finnish Forest Research Institute, Haapastensyrjä Breeding Station, Karkkilantie 247, FI-12600 Läyliäinen, Finland E-mail: pp@nn.fi
  • Zubizarreta Gerendiain, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail: azg@nn.fi
  • Karppinen, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail: jk@nn.fi
  • Ikonen, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail: vpi@nn.fi
article id 262, category Research article
Julian C. Fox, Huiquan Bi, Peter K. Ades. (2008). Modelling spatial dependence in an irregular natural forest. Silva Fennica vol. 42 no. 1 article id 262. https://doi.org/10.14214/sf.262
Keywords: correlogram; Eucalypt; growth modelling; moving average autoregression; Moran’s I; spatial autocorrelation
Abstract | View details | Full text in PDF | Author Info
The spatial dependence present in a natural stand of Eucalyptus pilularis (Smith) dominated mixed species forest was characterised and modelled. Two wildfires imposed a significant spatial dependence on the post disturbance stand. It was hypothesised that spatial variation in the intensity of the wildfires generated the observed structures. The influence of patch formation, micro-site variability and competitive influences were also noted in the residuals of a distance-dependent individual-tree growth model. A methodology capable of modelling these complicated patterns of observed dependence was sought, and candidates included the spatial interaction, direct specification and Papadakis methods. The spatial interaction method with a moving average autoregression was identified as the most appropriate method for explicitly modelling spatial dependence. Both the direct specification and Papadakis methods failed to capture the influence of competition. This study highlights the possibility that stand disturbances such as natural and artificial fires, insect and fungal attacks, and wind and snow damage are capable of imposing powerful spatial dependencies on the post disturbance stand. These dependencies need to be considered if individual tree growth models are to provide valid predictions in disturbed stands.
  • Fox, School of Forest and Ecosystem Science, University of Melbourne, Burnley Campus, 500 Yarra Blvd, Richmond, Victoria 3121 Australia E-mail: jcfox@unimelb.edu.au (email)
  • Bi, Forest Resources Research, New South Wales Department of Primary Industries, PO Box 100, Beecroft, NSW 2119 Australia E-mail: hb@nn.au
  • Ades, School of Forest and Ecosystem Science, University of Melbourne, Burnley Campus, 500 Yarra Blvd, Richmond, Victoria 3121 Australia E-mail: pka@nn.au
article id 415, category Research article
Sandhya Samarasinghe, Don Kulasiri. (2004). Stress intensity factor of wood from crack-tip displacement fields obtained from digital image processing. Silva Fennica vol. 38 no. 3 article id 415. https://doi.org/10.14214/sf.415
Keywords: Pinus radiata; wood; fracture toughness; stress intensity factor; digital image correlation; orthotropic fracture theory
Abstract | View details | Full text in PDF | Author Info
Stress intensity factor of radiata pine (Pinus radiata) in Tangential-Longitudinal opening mode was determined from crack-tip displacement fields obtained from digital image correlation in conjunction with orthotropic fracture theory. For lower loads, experiments agreed with the linear elastic fracture theory but for higher loads, stress intensity factor and load relationship was nonlinear. For 41% of the specimens tested, tip-displacement based stress intensity factor agreed with that based on the ASTM standard formula for lower loads but deviated for higher loads closer to failure. The tip displacement plots showed that the nonlinear behaviour is due to large displacements which we attributed to large plastic deformations and/or micro-cracking in this region. The other 59% specimens showed a similar trend except that the crack-tip based stress intensity factor was consistently higher than the value obtained from the standard formula. The fracture toughness from tip displacements was larger than the standard values for all specimens and the two were related by a logarithmic function with an R2 of 0.61. The study also established that fracture toughness increases with the angle of inclination of the original crack plane to the Radial Longitudinal plane.
  • Samarasinghe, Lincoln University, P.O. Box 84, Canterbury, New Zealand E-mail: ss@nn.nz
  • Kulasiri, Lincoln University, P.O. Box 84, Canterbury, New Zealand E-mail: kulasird@lincoln.ac.nz (email)
article id 481, category Research article
K. S. Wang. (2003). Relationship between empty seed and genetic factors in European beech (Fagus sylvatica L.). Silva Fennica vol. 37 no. 4 article id 481. https://doi.org/10.14214/sf.481
Keywords: Fagus sylvatica L.; allozyme; empty seeds; selfing; outcrossing rate; correlation
Abstract | View details | Full text in PDF | Author Info
The relationship between percentage of empty seed (Pes) and genetic factors was explored in an isolated stand of European beech (Fagus sylvatica L.). Nine allozyme loci (GOT-B, IDH-A, LAP-A, MDH-B, MDH-C, MNR-A, 6-PGDH-A, PGI-B and PGM-A) were used to estimate genetic factors. Pes ranged from 4.8% to 40.9% for seed samples of 91 trees within the stand and showed an approximate normal distribution. The average Pes was 21.4% and the repeatability of Pes was 43.4%. The multilocus estimate for outcrossing rate (tm) based on seed samples of 30 trees within the stand was 1.015 (SE = 0.011) and the mean single locus estimate was slightly higher at 1.061 (SE = 0.026). No evidence of biparental inbreeding was found. Weak positive correlation between Pes and maximum selfing rate as well as and significant negative correlation between Pes and multilocus outcrossing rate indicated that self-fertilization may be explained as one of the important causes of empty seeds in beech.
  • Wang, Program in Genetics and Genomic Biology, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada E-mail: kshengw@yahoo.ca (email)
article id 491, category Research article
Lars Rytter, Lars-Göran Stener. (2003). Clonal variation in nutrient content in woody biomass of hybrid aspen (Populus tremula L. x P. tremuloides Michx.). Silva Fennica vol. 37 no. 3 article id 491. https://doi.org/10.14214/sf.491
Keywords: growth; branches; genetic correlations; heritability; nutrient concentration; nutrient removal; stems
Abstract | View details | Full text in PDF | Author Info
Differences in the nutrient concentrations and nutrient amounts of stems and branches amongst clones of hybrid aspen (Populus tremula L. x P. tremuloides Michx.) were investigated. Seven clones with superior and seven with medium growth rates were selected from a test of 119 clones in southern Sweden. Four trees per clone were randomly identified and harvested in dormant conditions. Sample discs from the stems and branches were collected and analysed for N, K, P, Ca, Mg, and S concentrations, as well as wood density. The analyses revealed significant genetic differences in wood density, K, P, and Mg concentrations in the stems. There were weak (non-significant) and negative genetic correlations between stem volume and concentrations of all the nutrients, except potassium, suggesting that nutrient-efficient clones could be selected without significantly sacrificing genetic gain for growth. In the branches K, Ca, and Mg concentrations differed significantly among clones. After selecting more nutrient efficient clones, the potential savings of nutrients compared with current hybrid aspen material was estimated to be around 5%, which seems fairly low, at least in a short-term perspective. However, the use of clones with different nutrient storage strategies may be regarded as a possible way in the long run to save nutrients in hybrid aspen ecosystems, or of removing them when sludge is applied.
  • Rytter, Forestry Research Institute of Sweden, Skogforsk, Ekebo 2250, SE-26890, Svalöv, Sweden E-mail: lars.rytter@skogforsk.se (email)
  • Stener, Forestry Research Institute of Sweden, Skogforsk, Ekebo 2250, SE-26890, Svalöv, Sweden E-mail: lgs@nn.se
article id 508, category Research article
Kai Vellak, Jaanus Paal, Jaan Liira. (2003). Diversity and distribution pattern of bryophytes and vascular plants in a boreal spruce forest. Silva Fennica vol. 37 no. 1 article id 508. https://doi.org/10.14214/sf.508
Keywords: boreal forests; correlation; general linear models; Estonia; field layer; ground layer; spatial patterns
Abstract | View details | Full text in PDF | Author Info
Small scale pattern of bryophyte communities is one of the remarkable sources of diversity in species-poor boreal forests. By means of correlation and general linear model approaches, the relationships between bryophyte vegetation and upper layers, as well as the response of ground and field layer species to several environmental factors, was analyzed in a boreal spruce forest in South-East Estonia. Of the studied factors, the strongest influence on the diversity and spatial distribution of ground and field layer species was found for ‘distance from nearest tree’. Species from different layers react differently to the proximity of trees. Species richness of bryophytes is higher further from trees, whereas more vascular plant species prefer to grow in the vicinity of tree trunks. For bryophyte species richness, the pH of the decay horizon is also important; fewer bryophyte species occur in more acid conditions.
  • Vellak, Institute of Zoology and Botany, Estonian Agricultural University, 181 Riia str., 51014 Tartu, Estonia; Institute of Botany and Ecology, University of Tartu, 40 Lai Str., 51005 Tartu, Estonia E-mail: kvellak@zbi.ee (email)
  • Paal, Institute of Botany and Ecology, University of Tartu, 40 Lai Str., 51005 Tartu, Estonia E-mail: jp@nn.ee
  • Liira, Institute of Botany and Ecology, University of Tartu, 40 Lai Str., 51005 Tartu, Estonia E-mail: jl@nn.ee
article id 557, category Research article
Tuomo Wallenius, Timo Kuuluvainen, Raimo Heikkilä, Tapio Lindholm. (2002). Spatial tree age structure and fire history in two old-growth forests in eastern Fennoscandia. Silva Fennica vol. 36 no. 1 article id 557. https://doi.org/10.14214/sf.557
Keywords: Pinus sylvestris; Picea abies; disturbance dynamics; spatial autocorrelation; spatial pattern
Abstract | View details | Full text in PDF | Author Info
Two near natural old-growth forests, one dominated by Picea abies and the other by Pinus sylvestris, were studied for their fire history, and spatial patterns of trees and tree ages. The spatial tree age structure and the disturbance history of the forests were examined by drawing age class maps based on mapped and aged trees and by dating fires based on fire scars, and by using spatial analyses at tree scale. The tree age structures of the Picea and Pinus dominated forests were different, mainly due to differences in fire history and sensitivity of the dominant tree species to fire. Fire histories and tree age structures of both sites have probably been affected by human in the ancient past. However, in the Picea dominated site, the fires had been severe, killing most of the trees, whereas in the Pinus dominated site the severity of fires had been more variable, leaving some Pinus and even Picea trees alive. In the Pinus dominated site, the tree age distribution was multimodal, consisting of two Pinus cohorts, which were established after fires and a later Picea regeneration. The Picea dominated site was composed of four patches of different disturbance history. In the oldest patch, the tree age distribution was unimodal, with no distinct cohorts, while a single cohort that regenerated after severe fire disturbances dominated the three other patches. In both sites the overall spatial patterns of living and dead trees were random and the proportion of spatially autocorrelated variance of tree age was low. This means that trees of different age grew more or less mixed in the forest without forming spatially distinct regeneration patches, even in the oldest patch of Picea dominated Liimatanvaara, well over 200 years after a fire. The results show that detail knowledge of disturbance history is essential for understanding the development of tree age structures and their spatial patterns.
  • Wallenius, Department of Ecology and Systematics, University of Helsinki, P.O. Box 65, FIN-00014, Helsinki, Finland E-mail: tuomo.wallenius@helsinki.fi (email)
  • Kuuluvainen, Department of Forest Ecology, University of Helsinki, P.O. Box 27, FIN-00014, Helsinki, Finland E-mail: tk@nn.fi
  • Heikkilä, Research Centre of Friendship Park, Tönölä, FIN-88900 Kuhmo, Finland E-mail: rh@nn.fi
  • Lindholm, Finnish Environment Institute, Nature and Land Use Division, P.O. Box 140, FIN-00251 Helsinki, Finland E-mail: tl@nn.fi
article id 630, category Research article
S. Samarasinghe, G. D. Kulasiri. (2000). Displacement fields of wood in tension based on image processing: Part 2. Crack-tip displacements in mode-I and mixed-mode fracture. Silva Fennica vol. 34 no. 3 article id 630. https://doi.org/10.14214/sf.630
Keywords: wood; digital image correlation; fracture modes; orthotropic fracture; tip displacement
Abstract | View details | Full text in PDF | Author Info
Near tip displacement fields for tensile loaded cracked rubber and wood with a crack parallel-, perpendicular-to-grain, and a parallel-to-grain crack inclined 30°, 45°, and 60° to the load axis were obtained from digital image correlation (DIC). Theoretical displacements were also obtained for rubber and wood using isotropic and orthotropic fracture theory, respectively. The results showed that DIC can reveal fine details of the nature of displacements and the influences of crack tip in both rubber and wood. Experimental crack tip displacements for wood compare well with theory; particularly, when load is perpendicular-to-grain. Some anomalies were found in the tip displacements in the direction of the tracheids due to the unique nature of their behaviour not accounted for by theory. Mixed-mode crack tip displacement fields for wood clearly showed the increasing influence of crack angle on the displacements, and the displacements perpendicular to crack compared very well with theory. The displacements parallel to crack showed some variations owing to the involvement of tracheids.
  • Samarasinghe, Lincoln University, Appl. Computing, Mathematics and Statistics Group, P.O. Box 84, Canterbury, New Zealand E-mail: ss@nn.nz
  • Kulasiri, Lincoln University, Appl. Computing, Mathematics and Statistics Group, P.O. Box 84, Canterbury, New Zealand E-mail: kulasird@tui.lincoln.ac.nz (email)

Category : Research note

article id 403, category Research note
Timo Saksa, Juha Heiskanen, Jari Miina, Jaakko Tuomola, Taneli Kolström. (2005). Multilevel modelling of height growth in young Norway spruce plantations in southern Finland. Silva Fennica vol. 39 no. 1 article id 403. https://doi.org/10.14214/sf.403
Keywords: Norway spruce; Picea abies; height growth; mounding; disc trenching; container seedlings; intra-level correlation; variance-component model
Abstract | View details | Full text in PDF | Author Info
Height development of Norway spruce (Picea abies (L.) Karst.) transplants was studied on 22 sites prepared by disc trenching or mounding. At the age of 4–9 years the plantations were surveyed using a multistage sampling design. For every planted spruce on a plot, the past annual height increments were measured as far into the past as possible. Multilevel mixed linear modelling was used to analyse the variation in growth at different levels (year, stand, cluster, plot, tree) and the effects of climatic and site characteristics on height growth. The within-plantation variation in height growth was higher on mounded sites than on disc-trenched sites. The mean temperature and the precipitation sum of the summer months affected height growth positively. Soil characteristics measured from undisturbed soil did not explain the height growth of seedlings on mounded sites, whereas on disc-trenched sites, the depth of the organic layer and the soil temperature had a positive effect and the depth of the eluvial horizon a negative effect. The modelling approach used proved to be a useful method for examining the sources of variation in development of young plantations.
  • Saksa, The Finnish Forest Institute, Suonenjoki Research Station, FI-77600 Suonenjoki, Finland E-mail: ts@nn.fi (email)
  • Heiskanen, The Finnish Forest Institute, Suonenjoki Research Station, FI-77600 Suonenjoki, Finland E-mail: jh@nn.fi
  • Miina, The Finnish Forest Institute, Joensuu Research Centre, P. O. Box 68, FI-80101 Joensuu, Finland E-mail: jm@nn.fi
  • Tuomola, The University of Joensuu, Mekrijärvi Research Station, FI-82900 Ilomantsi, Finland E-mail: jt@nn.fi
  • Kolström, The University of Joensuu, Mekrijärvi Research Station, FI-82900 Ilomantsi, Finland E-mail: tk@nn.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles