Current issue: 58(2)

Under compilation: 58(3)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'phenotypic correlation'

Category : Research article

article id 192, category Research article
Heli Peltola, Jaume Gort, Pertti Pulkkinen, Ane Zubizarreta Gerendiain, Jouni Karppinen, Veli-Pekka Ikonen. (2009). Differences in growth and wood density traits in Scots pine (Pinus sylvestris L.) genetic entries grown at different spacing and sites. Silva Fennica vol. 43 no. 3 article id 192. https://doi.org/10.14214/sf.192
Keywords: genetic entry; stem volume; height; diameter; wood property traits; phenotypic correlation
Abstract | View details | Full text in PDF | Author Info
In forest breeding, stem volume has typically taken as the most important selection trait, whereas less attention has been given to wood density traits. In this work, we investigated the effects of spacing and genetic entry on the growth, yield and wood density traits in 20 year old Scots pines (Pinus sylvestris L.) based on 10 genetic entries harvested from a spacing trial (stand density range 2000–4000 trees/ha) in central Finland. In order to study also the site effects, we harvested additional material from a trial located in southern Finland (stand density of 2000 trees/ha). Compared to growth and yield properties, wood density traits showed a lower phenotypic variation. Phenotypic correlations among different traits were negative, and mostly moderate to high, suggesting that selection for one trait would simultaneously affect the others. In addition, moderate to strong phenotypic correlations were found among different wood density traits. Stem volume (V) and breast height diameter (DBH) were the largest in widest spacing, whereas in the densest one tree height (H) and latewood percentage were the highest. Genetic entry affected H and wood density traits regardless of spacing. When comparing two sites (with same stand density), genetic entry affected H, whereas site affected DBH and wood density traits. Ranking between genetic entries changed depending on the trait, spacing or site considered. Therefore, no overall ranking was possible. However, we could identify genetic entries having a high V and a relatively high wood density, showing potential for future forest regeneration material.
  • Peltola, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail: heli.peltola@joensuu.fi (email)
  • Gort, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail: jg@nn.fi
  • Pulkkinen, Finnish Forest Research Institute, Haapastensyrjä Breeding Station, Karkkilantie 247, FI-12600 Läyliäinen, Finland E-mail: pp@nn.fi
  • Zubizarreta Gerendiain, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail: azg@nn.fi
  • Karppinen, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail: jk@nn.fi
  • Ikonen, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail: vpi@nn.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles