Permanent sample plots are considered to be the most reliable basis for investigations into structure and development of stands. Such sample plots, established since 1924 in Finland, have been used to study thinnings of varying intensity. These studies are yet too short to give comprehensive conclusions. It is also possible to base the studies on sample plots measured in managed forests and gain in this way information suitable for practical purposes. In this investigation development of stands treated by two different methods, repeated thinnings and repeated selection cutting were studied in pure, even-aged Scots pine (Pinus sylvestris L.) stands in Southern Finland, on three forest types.
The results show that volume increment level of naturally normal stands seem to have been reached easily by stands treated with repeated thinnings. With advancing age, the growing stock of thinned stands fall short from the natural stands. As thinnings have removed primarily the poorest trees, the increment is distributed over trees of a larger size more in thinned than in naturally normal stands.
When intensive cuttings have resulted in a relatively small growing stock, the decrease in volume increment leads to considerable decrease in volume. The size of the tree has no essential effect – within certain limits - on the volume increment of the stand, if the volume removed is similar. However, every intermediate thinning removing largest-sized trees may result in the prolonged rotation. Since the volume increment of an older stand is much smaller than earlier, intermediate thinnings removing largest-sized trees should be avoided if the aim is the greatest volume yield. The growing stock of middle-aged or older stands untreated or treated with slight cuttings only can as a rule be considerably reduced without volume increment declining.
The PDF includes a summary in English.
Observations of connections between the roots of living trees and root systems of stumps have been reported already in 1900s. In Finland root connections have been found in Birch (Betula sp.), Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.), but there are no studies on abundance of the connections. This investigation studied root connections in a series of naturally regenerated Scots pine stands from seedling stands to mature trees in Southern Finland, and some sown seedling stands.
Root connections were found to be common in naturally regenerated, older stands that had passed the thicket stage. Approximately 21-28% of the trees had at least one root connection to another living tree, dead tree or living stump. Connections were few or absent in seedling stands. Sown seedling groups had many root connections in contrary to naturally regenerated seedling stands. Trees belonging to the dominating canopy class had most root connections. The trees could form a network of up to twenty trees and living stumps. Root connections were more common the larger the tree was or the nearer the trees grew each other. The coalescent roots were often situated near the stem. Experiments showed that water and nutrients transferred in the roots could move from one tree to another. Living stumps from previous fellings were relatively common. In the sites studied, there was in average 178 stumps connected to a living tree per hectare.
The PDF includes a summary in German.
Literature knows a variety of forest and timber related balances and even wider variety of calculations concerning the themes. The article presents forest and timber balances divided into three categories, based on their purpose.
The three categories are: 1) (national) economic balances for calculating the sustainability of forest use and sufficiency of forest resources; 2) balances of yearly harvesting rates for mostly commercial purposes, but also economic uses; and 3) balances of timber demand and those for balance between supply and demand, especially for foreign trade.
Finally the author critically views the use of balances to describe the amounts of wood used in industry.
The PDF contains a summary in Finnish.The article presents the background of increment calculations and periodic measurements of forests, as well the historical development of increment calculations in North-America, Middle-Europe, Scandinavia and Finland. The measurements and calculations are presented for individual trees, for a forest stand and for the total resource of a normal forest stand.
The practice of increment calculations has still some problems regarding the measurements of standing and harvested trees. The article discusses some ways to overcome the problems.