Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Silva Fennica vol. 53 no. 4 | 2019

Category : Editorial

article id 10285, category Editorial
Nicole J. Fenton. (2019). The introduction, the link between applied research and a successful publication. Silva Fennica vol. 53 no. 4 article id 10285. https://doi.org/10.14214/sf.10285
Full text in HTML | Full text in PDF | Author Info
  • Fenton, Université du Québec en Abitibi-Temiscamingue, Institute for Forest Research (IFR) at UQAT, Rouyn-Noranda (Québec), Canada E-mail: nicole.fenton@uqat.ca (email)

Category : Research article

article id 10230, category Research article
Mohammed Henneb, Osvaldo Valeria, Nelson Thiffault, Nicole Fenton. (2019). Black spruce seedling growth response in controlled organic and organic-mineral substrates. Silva Fennica vol. 53 no. 4 article id 10230. https://doi.org/10.14214/sf.10230
Keywords: Picea mariana; paludification; seedling growth; seedling nutrition; semi-controlled experiment; substrate
Highlights: Seedling height and diameter were highest on clay and mesic substrates respectively; Foliar nutrients were relatively high in seedlings that were established on mesic substrates; We recommend the application of mechanical soil preparation techniques that promote the creation of organic-mesic substrates to support regeneration establishment.
Abstract | Full text in HTML | Full text in PDF | Author Info

In the boreal forest of eastern Canada, a large proportion of black spruce (Picea mariana [Mill.] Britton, Sterns & Poggenb.) stands are affected by paludification. Edaphic conditions that are created by paludification processes, including an abundance of microsites with high moisture and low nutrient contents, hinder forest regeneration. Disturbance of paludified sites by mechanical soil preparation (MSP) reduces organic layer thickness, while generating a range of substrates for regeneration establishment. Yet, little information is available regarding the effects of these substrates on tree growth. Our objective was to determine the effect of organic, mineral and organo-mineral substrates that are created following MSP of a paludified site on the growth and root development of black spruce seedlings in a semi-controlled environment. We demonstrated that substrate exerted a significant effect on seedling growth and foliar concentrations of N, P and K. Increase in height and diameter were respectively greatest on clay (mineral) and mesic substrates. Substrate effects did not affect total biomass increases or final root biomass. Foliar nutrients (N, P, K) were relatively high in seedlings that were established on mesic substrates and relatively low for those established on clay substrates. To ensure successful seedling establishment, we recommend the application of MSP techniques that expose organic-mesic substrates on sites that are susceptible to paludification.

  • Henneb, Institut de recherche sur les forêts (IRF), Université du Québec en Abitibi-Témiscamingue, 445 boul. de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada ORCID http://orcid.org/0000-0003-4507-1219 E-mail: mohammed.henneb@uqat.ca (email)
  • Valeria, Institut de recherche sur les forêts (IRF), Université du Québec en Abitibi-Témiscamingue, 445 boul. de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada ORCID http://orcid.org/0000-0002-9921-7474 E-mail: osvaldo.valeria@uqat.ca
  • Thiffault, Institut de recherche sur les forêts (IRF), Université du Québec en Abitibi-Témiscamingue, 445 boul. de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada; Natural Resources Canada, Canadian Wood Fibre Centre, 1055 rue du PEPS, P.O. Box 10380, Stn Sainte Foy, Quebec, QC G1V 4C7, Canada ORCID http://orcid.org/0000-0003-2017-6890 E-mail: nelson.thiffault@canada.ca
  • Fenton, Institut de recherche sur les forêts (IRF), Université du Québec en Abitibi-Témiscamingue, 445 boul. de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada ORCID http://orcid.org/0000-0002-3782-2361 E-mail: nicole.fenton@uqat.ca
article id 10217, category Research article
Xingji Jin, Timo Pukkala, Fengri Li, Lihu Dong. (2019). Developing growth models for tree plantations using inadequate data – a case for Korean pine in Northeast China. Silva Fennica vol. 53 no. 4 article id 10217. https://doi.org/10.14214/sf.10217
Keywords: Pinus koraiensis; optimization-based modeling; quantile regression; self-thinning
Highlights: The permanent sample plots of Chinese plantation trees have not been designed for producing data for growth modeling; We used various methods to deal with the inadequacies of sample plot data; Optimization was used to fit diameter increment and survival models using data with varying measurement intervals and tree identification errors; Quantile regression was used to model self-thinning limit.
Abstract | Full text in HTML | Full text in PDF | Author Info

Korean pine (Pinus koraiensis Siebold & Zucc.) is economically the most important tree species in northeast China. Korean pine plantations are established and managed for the production of timber and seeds. Despite the importance of the species, few models have been developed for the comparison of alternative management schedules. Model development is affected by the fact that permanent sample plots and thinning experiments have not been designed and managed for modeling purposes. The permanent sample plots include few non-thinned plots, and weak trees are removed in thinning treatments, leading to low mortality rate. Moreover, the measurement interval is irregular. This study used optimization-based modeling approach in tree-level diameter increment and survival modeling to deal with the above problems. Models for self-thinning limit were developed to alleviate the problem of underestimated mortality arising from the features of the data. In addition, improved site index and individual-tree height models were developed. The model of Lundqvist and Korf was used as the site index model and the model proposed by Schumacher as the height model. Quantile regression was used to model the maximum stand basal area and maximum number of trees as a function of mean tree diameter and site index. Tree diameter, stand basal area, basal area in larger trees and site index were used as the predictors of diameter increment and tree survival. The models developed in this study constitute a model set that is suitable for simulation and optimization studies. The models produced simulation results that correspond to measured stand development.

  • Jin, Key Laboratory of Sustainable Forest Ecosystem Management - Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People’s Republic of China ORCID http://orcid.org/0000-0003-2971-2709 E-mail: xingji_jin@163.com
  • Pukkala, Key Laboratory of Sustainable Forest Ecosystem Management - Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People’s Republic of China; University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: timo.pukkala@uef.fi (email)
  • Li, Key Laboratory of Sustainable Forest Ecosystem Management - Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People’s Republic of China ORCID http://orcid.org/0000-0002-4058-769X E-mail: fengrili@126.com
  • Dong, Key Laboratory of Sustainable Forest Ecosystem Management - Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People’s Republic of China ORCID http://orcid.org/0000-0002-3985-9475 E-mail: ldonglihu2006@163.com
article id 10209, category Research article
Claudie-Maude Canuel, Nelson Thiffault, Michael K. Hoepting, James C.G. Farrell. (2019). Legacy effects of precommercial thinning on the natural regeneration of next rotation balsam fir stands in eastern Canada. Silva Fennica vol. 53 no. 4 article id 10209. https://doi.org/10.14214/sf.10209
Keywords: silviculture; Abies balsamea; PCT; conifer; density management
Highlights: We investigated the potential legacy effects of precommercial thinning in next rotation, dense natural balsam fir stands; Precommercial thinning had few legacy effects on next rotation stands and should not impair their regeneration; Balsam fir dominated the regeneration layer. Other tree species were almost absent.
Abstract | Full text in HTML | Full text in PDF | Author Info

The Green River precommercial thinning (PCT) trial was established between 1959–1961 in New Brunswick (Canada) within natural balsam fir (Abies balsamea (L.) Mill.)-dominated stands. Three silviculture scenarios differing only by the increasing nominal spacings of PCT treatments (1.2 m, 1.8 m, 2.4 m) were compared to an unthinned control within randomized replicates that were clearcut harvested in 2008 and treated with herbicide in 2011. During the fourth post-harvest growing season, we assessed regeneration, competing vegetation and coarse woody debris (CWD; differentiated between large woody debris and slash) to assess the legacy effects of PCT on regeneration of next rotation stands. Our results confirmed that silviculture scenarios including PCT significantly increased conifer stocking in treated plots compared to control conditions, but only in the 1.8 m nominal spacing. Considering that treated and untreated stands were fully stocked, we conclude that PCT using the spacing gradient tested has no legacy effect on the regeneration of next rotation natural balsam fir stands. Given the known sensitivity of balsam fir to future climate conditions in this region, we suggest that future treatments should promote tree species diversity to support ecosystem resilience to climate change by favouring more warm-adapted species, such as some hardwoods.

  • Canuel, Faculté de foresterie, géographie et géomatique, Université Laval, Québec, QC G1V 0A6, Canada;  Canadian Wood Fibre Centre, Natural Resources Canada, 1055 du P.E.P.S., P.O. Box 10380, Sainte-Foy Stn., Québec, QC G1V 4C7, Canada E-mail: claudie-maude.canuel.1@ulaval.ca
  • Thiffault, Canadian Wood Fibre Centre, Natural Resources Canada, 1055 du P.E.P.S., P.O. Box 10380, Sainte-Foy Stn., Québec, QC G1V 4C7, Canada ORCID http://orcid.org/0000-0003-2017-6890 E-mail: nelson.thiffault@canada.ca (email)
  • Hoepting, Canadian Wood Fibre Centre, Natural Resources Canada, 1219 Queen St. E., Sault Ste. Marie, ON P6A 2E5, Canada E-mail: michael.hoepting@canada.ca
  • Farrell, Canadian Wood Fibre Centre, Natural Resources Canada, 1350 Regent Street, P.O. Box 4000, Fredericton, NB E3B 5P7, Canada E-mail: jamescg.farrell@canada.ca
article id 10183, category Research article
Tomi Karjalainen, Petteri Packalen, Janne Räty, Matti Maltamo. (2019). Predicting factual sawlog volumes in Scots pine dominated forests using airborne laser scanning data. Silva Fennica vol. 53 no. 4 article id 10183. https://doi.org/10.14214/sf.10183
Keywords: Pinus sylvestris; area based approach; k-NN; sawlog
Highlights: We predicted visually bucked factual sawlog volumes at the 30 × 30 m plot-level with several alternatives; The lowest root mean squared error value of approximately 21% was obtained with a linear mixed-effects model that employed factual sawlog volume as a response variable and airborne laser scanning metrics as predictors; The sawlog reduction model commonly used in Finland performed poorly.
Abstract | Full text in HTML | Full text in PDF | Author Info

The aim in the study was to compare alternatives for the prediction of factual sawlog volumes using airborne laser scanning (ALS) data in Scots pine (Pinus sylvestris L.) dominated forests in eastern Finland. Accurate estimates of factual sawlog volume are desirable to ease the planning of harvesting operations. The factual sawlog volume of pines was derived from visual bucking, i.e. a procedure where the defects were located on each stem during sample plot measurements. For other species, the theoretical sawlog volume was considered also as the factual sawlog volume due to data restrictions. We predicted factual sawlog volume with eight alternatives that were based on either linear mixed-effects models or k-nearest neighbour imputations. An existing sawlog reduction model, commonly used in Finland, was also tested individually and combined with a number of the alternatives, and site type information was also utilised. Model fitting and prediction was implemented at the 15 × 15 m level, but accuracy was assessed at the 30 × 30 m level. The relative root mean squared error (RMSE%) values for the factual sawlog volume predictions varied between 20.9% and 33.5%, and the best accuracy was obtained with a linear mixed-effects model. These results indicate that factual sawlog volumes in Scots pine dominated forests can be predicted with reasonable accuracy with ALS data.

  • Karjalainen, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: tomikar@uef.fi (email)
  • Packalen, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: petteri.packalen@uef.fi
  • Räty, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: janne.raty@uef.fi
  • Maltamo, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: matti.maltamo@uef.fi
article id 10151, category Research article
Jyri Hietala, Riitta Hänninen, Matleena Kniivilä, Anne Toppinen. (2019). Networks in international opportunity recognition among Finnish wood product industry SMEs. Silva Fennica vol. 53 no. 4 article id 10151. https://doi.org/10.14214/sf.10151
Keywords: wood products; business networks; institutional networks; internationalization; opportunity recognition; social networks
Highlights: In line with earlier literature, we found the networks in our study to positively impact international opportunity recognition; Despite the reliance on various network forms and levels, a strategic stance towards opportunity recognition can be characterized as being more reactive than proactive; Institutional networks represented a more systematic way of recognizing international opportunities among case companies.
Abstract | Full text in HTML | Full text in PDF | Author Info

Bioeconomy development will create new opportunities for firms operating in the international wood products markets, and identifying and exploiting these opportunities is emphasized as a key concept to achieving business success. Our study will attempt to address a gap in the literature on sawmill industry business development from the viewpoint of international opportunity recognition. The aim of our study is to provide a holistic description on how small and medium-sized enterprises (SMEs) in the wood products industry recognize and exploit international business opportunities, and how they utilize network perspectives in this context. The subject was examined through Finnish wood product industry SMEs by interviewing 11 managers and industry representatives. The results suggest that SMEs recognize international opportunities reactively per se. Social networks formed in professional forums were an important information channel for identifying international opportunities. Through vertical business networks, such as sales agents, firms have been able to increase their international market presence and free their own resources for other important activities. Horizontal dyadic business networks were seen to facilitate new international opportunities through cooperation, while excessive reliance on vertical networks raised concerns and seemed not to be effective in international opportunity recognition. Institutional networks formed a systematic way of recognizing international opportunities, but more so at the initial market entry stage.

  • Hietala, United Bankers, Aleksanterinkatu 21 A, FI-00100 Helsinki, Finland E-mail: jyri.hietala@unitedbankers.fi (email)
  • Hänninen, Natural Resources Institute Finland (Luke), Bioeconomy and environment, Latokartanonkaari 9, FI-00790 Helsinki, Finland E-mail: riitta.hanninen@luke.fi
  • Kniivilä, Natural Resources Institute Finland (Luke), Bioeconomy and environment, Latokartanonkaari 9, FI-00790 Helsinki, Finland E-mail: matleena.kniivila@luke.fi
  • Toppinen, University of Helsinki, Helsinki Institute of Sustainability Science, Latokartanonkaari 7, P.O. 27, FI-00014 University of Helsinki, Finland E-mail: anne.toppinen@helsinki.fi
article id 10147, category Research article
Mika Aalto, Olli-Jussi Korpinen, Tapio Ranta. (2019). Feedstock availability and moisture content data processing for multi-year simulation of forest biomass supply in energy production. Silva Fennica vol. 53 no. 4 article id 10147. https://doi.org/10.14214/sf.10147
Keywords: bioenergy; simulation; forest resources; data analysis; geographic information system
Highlights: A method for allocating forest biomass availability for a multi-year simulation model was developed; The possibility to take the quality change of feedstock into account by moisture estimations was studied; A method to estimate weather data for moisture estimation equations with fewer parameters was presented.
Abstract | Full text in HTML | Full text in PDF | Author Info

Simulation and modeling have become more common in forest biomass studies. Dynamic simulation has been used to study the supply chain of forest biomass with numerous different models. A robust predictive multi-year model requires biomass availability data, where annual variation is included spatially and temporally. This can be done by using data from enterprises, but in some cases relevant data is not accessible. Another option is to use forest inventory data to estimate biomass availability, but this data must be processed in the correct form to be utilized in the model. This study developed a method for preparing forest inventory data for a multi-year simulation supply model using the theoretical availability of feedstock. Methods for estimating quality changes during roadside storage are also presented, including a possible parameter estimation to decrease the amount of data needed. The methods were tested case by case using the inventory database “Biomass Atlas” and weather data from a weather station in Mikkeli, Finland. The data processing method for biomass allocation produced a reasonable quantity of stands and feedstock, having a realistic annual supply with variation for the demand point. The results of the study indicate that it is possible to estimate moisture content changes using weather data. The estimations decreased the accuracy of the model and, therefore, estimations should be kept minimal. The presented data preparation method can generate a supply of forest biomass for the simulation model, but the validity of the data must be ensured for correct model behavior.

  • Aalto, Lappeenranta-Lahti University of Technology LUT, School of Energy Systems, Laboratory of Bioenergy, Lönnrotinkatu 7, FI-50100 Mikkeli, Finland ORCID https://orcid.org/0000-0002-7768-1145 E-mail: mika.aalto@lut.fi (email)
  • Korpinen, Lappeenranta-Lahti University of Technology LUT, School of Energy Systems, Laboratory of Bioenergy, Lönnrotinkatu 7, FI-50100 Mikkeli, Finland E-mail: olli-jussi.korpinen@lut.fi
  • Ranta, Lappeenranta-Lahti University of Technology LUT, School of Energy Systems, Laboratory of Bioenergy, Lönnrotinkatu 7, FI-50100 Mikkeli, Finland ORCID https://orcid.org/0000-0001-5464-5136 E-mail: tapio.ranta@lut.fi
article id 10016, category Research article
Ivars Kļaviņš, Arta Bārdule, Zane Lībiete, Dagnija Lazdiņa, Andis Lazdiņš. (2019). Impact of biomass harvesting on nitrogen concentration in the soil solution in hemiboreal woody ecosystems. Silva Fennica vol. 53 no. 4 article id 10016. https://doi.org/10.14214/sf.10016
Keywords: nitrogen concentration; stump harvesting; whole-tree harvesting; soil solution; hemiboreal forest; short-rotation coppice
Highlights: Soil solution nitrogen concentrations in whole-tree harvesting sites are higher in sites of medium to high fertility than in sites of low fertility; In whole-tree harvesting and stem-only harvesting sites, soil solution nitrogen concentrations are highest 2 to 3 years after harvesting; The risks of nitrogen leaching immediately after harvesting are higher in traditional forestry systems compared to short-rotation cropping.
Abstract | Full text in HTML | Full text in PDF | Author Info

Considering the increasing use of wood biomass for energy and the related intensification of forest management, the impacts of different intensities of biomass harvesting on nutrient leaching risks must be better understood. Different nitrogen forms in the soil solution were monitored for 3 to 6 years after harvesting in hemiboreal forests in Latvia to evaluate the impacts of different biomass harvesting regimes on local nitrogen leaching risks, which potentially increase eutrophication in surface waters. In forestland dominated by Scots pine Pinus sylvestris L. or Norway spruce Picea abies L. (Karst.), the soil solution was sampled in: (i) stem-only harvesting (SOH), (ii) whole‐tree harvesting, with only slash removed (WTH), and (iii) whole‐tree harvesting, with both slash and stumps harvested (WTH + SB), subplots. In agricultural land, sampling was performed in an initially fertilised hybrid aspen (Populus tremula L.× P. tremuloides Michx.) short-rotation coppice (SRC), where above-ground biomass was harvested. In forestland, soil solution N (nitrogen) concentrations were highest in the second and third year after harvesting. Mean annual values in WTH subplots of medium to high fertility sites exceeded the mean values in SOH subplots and control subplots (mature stand where no harvesting was performed) for the entire study period; the opposite trend was observed for the low-fertility site. Biomass harvesting in the hybrid aspen SRC only slightly affected NO3-N (nitrate nitrogen) and NH4+-N (ammonium nitrogen) concentrations in the soil solution within 3 years after harvesting, but a significant decrease in the TN (total nitrogen) concentration in the soil solution was found in plots with additional N fertilisation performed once initially.

  • Kļaviņš, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia; University of Latvia, Raiņa blvd 19-125, LV 1586, Riga, Latvia E-mail: ivars.klavins@silava.lv (email)
  • Bārdule, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia; University of Latvia, Raiņa blvd 19-125, LV 1586, Riga, Latvia E-mail: arta.bardule@silava.lv
  • Lībiete, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia E-mail: zane.libiete@silava.lv
  • Lazdiņa, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia E-mail: dagnija.lazdina@silava.lv
  • Lazdiņš, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia E-mail: andis.lazdins@silava.lv
article id 10010, category Research article
Panu Halme, Jenna Purhonen, Emma-Liina Marjakangas, Atte Komonen, Katja Juutilainen, Nerea Abrego. (2019). Dead wood profile of a semi-natural boreal forest – implications for sampling. Silva Fennica vol. 53 no. 4 article id 10010. https://doi.org/10.14214/sf.10010
Keywords: coarse woody debris; coniferous forest; forest structure; fine woody debris; forest disturbance dynamics; saproxylic
Highlights: We constructed a full dead wood profile of a semi-natural boreal forest; Abundance-diameter distributions were different among tree species; Extensive sampling is needed if focus on large dead wood and rare tree species.
Abstract | Full text in HTML | Full text in PDF | Author Info

Dead wood profile of a forest is a useful tool for describing forest characteristics and assessing forest disturbance history. Nevertheless, there are few studies on dead wood profiles, including both coarse and fine dead wood, and on the effect of sampling intensity on the dead wood estimates. In a semi-natural boreal forest, we measured every dead wood item over 2 cm in diameter from 80 study plots. From eight plots, we further recorded dead wood items below 2 cm in diameter. Based on these data we constructed the full dead wood profile, i.e. the overall number of dead wood items and their distribution among different tree species, volumes of different size and decay stage categories. We discovered that while the number of small dead wood items was immense, their number dropped drastically from the diameter below 1 cm to diameters 2–3 cm. Different tree species had notably different abundance-diameter distribution patterns: spruce dead wood comprised most strikingly the smallest diameter fractions, whereas aspen dead wood comprised a larger share of large-diameter items. Most of the dead wood volume constituted of large pieces (>10 cm in diameter), and 62% of volume was birch. The variation in the dead wood estimates was small for the numerically dominant tree species and smallest diameter categories, but high for the sub-dominant tree species and larger size categories. In conclusion, the more the focus is on rare tree species and large dead wood items, the more comprehensive should the sampling be.

  • Halme, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland; School of Resource Wisdom, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland E-mail: panu.halme@jyu.fi (email)
  • Purhonen, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland E-mail: jenna.e.i.purhonen@jyu.fi
  • Marjakangas, Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway E-mail: emma-liina.marjakangas@ntnu.no
  • Komonen, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland; School of Resource Wisdom, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland E-mail: atte.komonen@jyu.fi
  • Juutilainen, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland E-mail: kjuutilainen@yahoo.com
  • Abrego, Department of Agricultural Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: nerea.abrego@helsinki.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles