Current issue: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Silva Fennica vol. 48 no. 4 | 2014

Category : Research article

article id 1211, category Research article
Xiao Chen, Deborah Page-Dumroese, Ruiheng Lv, Weiwei Wang, Guolei Li, Yong Liu. (2014). Interaction of initial litter quality and thinning intensity on litter decomposition rate, nitrogen accumulation and release in a pine plantation. Silva Fennica vol. 48 no. 4 article id 1211. https://doi.org/10.14214/sf.1211
Keywords: litter quality; litter decomposition; nitrogen cycling; thinning intensity; Pinus tabulaeformis
Highlights: Litter quality and thinning showed an interaction on one year litter decomposition rates, N accumulation, and net N release; N accumulated until the underlying critical acid-unhydrolyzable residue to nitrogen ratio (approximately 57–69) was met; Increased N concentration in litter and thinning intensity induced rapid litter decomposition and N cycling in coniferous plantation with a slow decomposition rate.
Abstract | Full text in HTML | Full text in PDF | Author Info
Thinning alters litter quality and microclimate under forests. Both of these two changes after thinning induce alterations of litter decomposition rates and nutrient cycling. However, a possible interaction between these two changes remains unclear. We placed two types of litter (LN, low N concentration litter; HN, high N concentration litter) in a Chinese pine (Pinus tabulaeformis Carrière) plantation under four thinning treatments to test the impacts of litter quality, thinning or their combination on decomposition rate and N cycling. In our study, N was accumulated to approach an underlying critical acid-unhydrolyzable residue to nitrogen ratio (approximately 57–69) in litter. Moreover, an interaction between litter quality and thinning on decomposition rates, N accumulation and net release did exist. On one hand, one year decomposition rate of LN was elevated after thinning while that of HN remained the same or even lower (under light thinning); N accumulation of LN declined with light thinning and was restored with the increase of thinning intensity whereas that of HN did not decline with thinning and increased under heavy thinning; Net N release from LN was only found in light and heavy thinning while that from HN was found in all treatments, moreover net N release from LN and HN were both elevated under heavy thinning. On the other hand, HN decomposed faster, accumulated less and released more N than LN did under all treatments. Generally, high N concentration in litter and high-intensity thinning can lead to rapid litter decomposition and N cycling in coniferous plantations.
  • Chen, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China E-mail: chenxiao_0123@126.com
  • Page-Dumroese, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 1221 South Main Street, Moscow, ID 83843, USA E-mail: ddumroese@fs.fed.us
  • Lv, College of Plant Science and Technology, Tarim University, Alar Xinjiang, 843300, China E-mail: lvrh514723@126.com
  • Wang, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China E-mail: fuyuerdejia@126.com
  • Li, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China E-mail: glli226@163.com
  • Liu, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China E-mail: lyong@bjfu.edu.cn (email)
article id 1207, category Research article
Olli-Pekka Tikkanen, Irina A. Chernyakova. (2014). Past human population history affects current forest landscape structure of Vodlozero National Park, Northwest Russia. Silva Fennica vol. 48 no. 4 article id 1207. https://doi.org/10.14214/sf.1207
Keywords: boreal forests; forest fires; recovery; forest structure; landscape change
Highlights: In large scale (0–20 km), the proportion of spruce in forest stands was positively affected by distance from old villages. This relationship was non-linear with a threshold distance of 15 km; In small scale (0–5 km), old villages affected tree species composition and age structure of forests. Effect on age structure was the strongest on stands growing on mineral soils.
Abstract | Full text in HTML | Full text in PDF | Author Info
The information about location and size of past human settlements can give new insights into the analysis of landscape structures. Vodlozero National Park (NP) is one the largest strictly protected areas in Northwestern Europe. We mapped the location of historic villages, which were abandoned in 1958, and studied the effect of past human activity in the forest landscape in two different scales using forest survey data. We assessed the possible change in age, volume and tree species composition from the edge of open fields up to the distance of 5 km from villages. We made a larger landscape analysis using a grid of forest stands covering the whole northern part of the NP. The past human activity was clearly visible in the present forest landscape. Distance from villages affected age, volume and tree species composition of the forest stands. This effect was the strongest within the first two kilometers from the villages. At the level of whole northern NP, the proportion of spruce markedly increased after approximately 15 km from the nearest old village. The changes in the forests surrounding the villages were most likely the result of the intensive use of wood for different commodities needed in households and farming, in addition to short rotation slash and burn agriculture. If the occurrence of forest fires was more frequent closer to villages than in more remote areas, it can well explain the observed pattern in the abundance of spruce in the larger landscape that is less tolerant to fire than pine.
  • Tikkanen, Department of Biology, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland (Current: School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland) & Interdisciplinary Research and Educational Center of Cross-border Communication CARELICA, Institute of History, Political and Social Sciences, Petrozavodsk State University, 33 Lenin Prospectus, 185910 Petrozavodsk, Republic of Karelia, Russia E-mail: Olli-Pekka.Tikkanen@uef.fi (email)
  • Chernyakova, Interdisciplinary Research and Educational Center of Cross-border Communication CARELICA, Institute of History, Political and Social Sciences, Petrozavodsk State University, 33 Lenin Prospectus, 185910 Petrozavodsk, Republic of Karelia, Russia E-mail: irina.chernyakova@onego.ru
article id 1188, category Research article
Kristina Wallertz, Henrik Nordenhem, Göran Nordlander. (2014). Damage by the pine weevil Hylobius abietis to seedlings of two native and five introduced tree species in Sweden. Silva Fennica vol. 48 no. 4 article id 1188. https://doi.org/10.14214/sf.1188
Keywords: forest regeneration; conifer seedlings; defence; feeding damage; forest plantation; resistance
Highlights: Both native and introduced confer species in Sweden can be highly susceptible to damage by the pine weevil; Douglas fir and Sitka spruce were generally the most damaged among six studied conifer species; The results highlight some of the risks in establishing exotic tree species for forest production.
Abstract | Full text in HTML | Full text in PDF | Author Info
There is increasing interest in using introduced species in Swedish forestry in response to climate change, but it is important to assess their resistance to native pests. Thus, we compared the extent of pine weevil feeding on two dominant native conifers, Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.), the non-host deciduous broadleaf hybrid aspen (Populus × wettsteinii Hämet-Ahti) and four introduced conifers: Douglas fir (Pseudotsuga menziesii (Mirb.) Franco), hybrid larch (Larix × marschlinsii Coaz), Sitka spruce (Picea sitchensis (Bong.) Carriére) and lodgepole pine (Pinus contorta Douglas ex Loudon). The extent of feeding damage on seedlings and its effect on their vitality were examined in a field study in south-central Sweden and a laboratory experiment, which gave largely consistent results. Generally, the species most heavily attacked by the pine weevil, in both experiments, were Douglas fir and Sitka spruce. In the field experiment pine weevils killed or severely damaged significantly higher proportions of Douglas fir and Sitka spruce seedlings (60%) than any other species except Norway spruce (49%). Among conifer seedlings the proportions of killed or severely damaged seedlings were lowest for Scots pine and hybrid larch (27%) and Lodgepole pine (36%). The results indicate that most conifer species planted on young clear-cuttings in Sweden need some kind of pine weevil protection, and the possibility that introducing new tree species might increase damage caused by pests must be considered. For instance, widespread use of hybrid aspen could reduce damage by pine weevils, but increase damage by other, untested pests or pathogens.
  • Wallertz, Unit for Field-based Forest Research, Swedish University of Agricultural Sciences (SLU), Asa Research Station, SE-36030 Lammhult, Sweden E-mail: kristina.wallertz@slu.se (email)
  • Nordenhem, Department of Ecology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7044, SE-75007 Uppsala, Sweden E-mail: henrik.nordenhem@slu.se
  • Nordlander, Department of Ecology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7044, SE-75007 Uppsala, Sweden E-mail: goran.nordlander@slu.se
article id 1176, category Research article
Batoul Al-Hawija, Viktoria Wagner, Monika Partzsch, Isabell Hensen. (2014). Germination differences between natural and afforested populations of Pinus brutia and Cupressus sempervirens. Silva Fennica vol. 48 no. 4 article id 1176. https://doi.org/10.14214/sf.1176
Keywords: nursery; silviculture; drought stress; cold stratification; local adaptation; salt stress; Syria
Highlights: Silvicultural practices of raising and outplanting seedlings yielded contrasting outcomes in our species; Afforested Pinus brutia populations acquired ability to tolerate drought stress at intermediate and hot temperatures compared to natural populations, which may indicate local adaptation; Natural Cupressus sempervirens populations showed higher salt-tolerance than afforested populations; Seed germination was optimal under intermediate temperatures and deionized water for both species.
Abstract | Full text in HTML | Full text in PDF | Author Info
In afforestation, silvicultural processes of raising and planting seedlings under certain conditions can yield contrasting outcomes in tree stock performance. Moderate nursery conditions may select against stress tolerance whereas planting seedlings in stressful environments at afforestation sites may select for higher stress tolerance compared to natural populations. We compared germination performance between natural and afforested populations of Pinus brutia Ten. subsp. brutia and Cupressus sempervirens L. var. horizontalis (Mill.) under differing stress treatments. Seeds were collected from both natural stands and from afforested populations outside the natural distribution range, in Syria. Cold, intermediate and hot temperature regimes were simulated (8/4 °C, 20/10 °C and 32/20 °C) along with cold stratification, drought stress (–0.2 and –0.4 MPa), salt stress (50 and 100 mMol l–1), and deionized water (control) conditions. In addition, we tested the effects of seed weight and climatic conditions on seed germination. In general, intermediate temperatures were optimal for both population types. Afforested P. brutia populations outperformed natural ones under drought stress levels at hot and/or intermediate temperatures. Conversely, in C. sempervirens, cold stratification at all temperatures and higher salt stress at intermediate temperatures significantly decreased germination in afforested populations. Seed weight did not significantly affect germination percentages, which were however significantly negatively related to annual precipitation in P. brutia, and to annual temperature in C. sempervirens. We infer that silvicultural processes led to divergent outcomes in our species: local adaptation to drought stress and hot temperatures in afforested P. brutia populations and lower salt-stress tolerance in C. sempervirens.
  • Al-Hawija, Martin-Luther-University Halle-Wittenberg, Institute of Biology/Geobotany and Botanical Garden, Am Kirchtor 1, D-06108 Halle/Saale, Germany E-mail: batoulh@gmail.com (email)
  • Wagner, Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic E-mail: wagner@sci.muni.cz
  • Partzsch, Martin-Luther-University Halle-Wittenberg, Institute of Biology/Geobotany and Botanical Garden, Am Kirchtor 1, D-06108 Halle/Saale, Germany E-mail: monika.partzsch@botanik.uni-halle.de
  • Hensen, Martin-Luther-University Halle-Wittenberg, Institute of Biology/Geobotany and Botanical Garden, Am Kirchtor 1, D-06108 Halle/Saale, Germany & German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany E-mail: isabell.hensen@botanik.uni-halle.de
article id 1159, category Research article
Grzegorz Szewczyk, Janusz Michał Sowa, Włodzimierz Grzebieniowski, Mariusz Kormanek, Dariusz Kulak, Arkadiusz Stańczykiewicz. (2014). Sequencing of harvester work during standard cuttings and in areas with windbreaks. Silva Fennica vol. 48 no. 4 article id 1159. https://doi.org/10.14214/sf.1159
Keywords: time consumption; time series; timber harvesting; harvesters; post-disaster stands
Highlights: In standard cutting stands and thinning areas with windbreaks there occurred three-activity operational cycles. In mature stands with windbreaks the occurrence of stable sequences supplemented with five-activity cycles was noted. Consequently, the operational time in post-disaster thinning stands should be increased by 55% whereas in mature stands it should be 30% longer in comparison with standard stands.
Abstract | Full text in HTML | Full text in PDF | Author Info
The aim of the study was to characterize repetitive cycles of harvester operation. The study was conducted in thinning, mature and post-disaster pine stands. The sequences of the activities characteristic of harvester operation were described as time series. In order to detect the cyclic variable structure of the analysed time series, the methodology of the single spectrum Fourier analysis was applied. In standard stands, post-disaster late-thinning stands and mature stands, the existence of stable operational cycles with the length of three activities was discovered while in post-disaster mature stands additional five-activity operational phases were noted. Described in this way, the lengths of the operational cycles of harvesters working in post-disaster areas were higher by about 55% and 30% respectively, as compared to standard thinning and mature stands.
  • Szewczyk, University of Agriculture in Krakow, Faculty of Forestry, Institute of Forest Utilization and Forest Technology, Department of Forest and Wood Utilization, Al. 29-Listopada 46, 31-425 Krakow, Poland E-mail: rlszewcz@cyf-kr.edu.pl (email)
  • Sowa, University of Agriculture in Krakow, Faculty of Forestry, Institute of Forest Utilization and Forest Technology, Department of Forest and Wood Utilization, Al. 29-Listopada 46, 31-425 Krakow, Poland E-mail: rlsowa@cyf-kr.edu.pl
  • Grzebieniowski, University of Agriculture in Krakow, Faculty of Forestry, Institute of Forest Utilization and Forest Technology, Department of Forest and Wood Utilization, Al. 29-Listopada 46, 31-425 Krakow, Poland E-mail: wrzoswj@interia.pl
  • Kormanek, University of Agriculture in Krakow, Faculty of Forestry, Institute of Forest Utilization and Forest Technology, Department of Forest Work Mechanisation, Al. 29-Listopada 46, 31-425 Krakow, Poland E-mail: rlkorma@cyf-kr.edu.pl
  • Kulak, University of Agriculture in Krakow, Faculty of Forestry, Institute of Forest Utilization and Forest Technology, Department of Forest and Wood Utilization, Al. 29-Listopada 46, 31-425 Krakow, Poland E-mail: rlkulak@cyf-kr.edu.pl
  • Stańczykiewicz, University of Agriculture in Krakow, Faculty of Forestry, Institute of Forest Utilization and Forest Technology, Department of Forest and Wood Utilization, Al. 29-Listopada 46, 31-425 Krakow, Poland E-mail: rlstancz@cyf-kr.edu.pl
article id 1119, category Research article
Beata Woziwoda, Agnieszka Parzych, Dominik Kopeć. (2014). Species diversity, biomass accumulation and carbon sequestration in the understorey of post-agricultural Scots pine forests. Silva Fennica vol. 48 no. 4 article id 1119. https://doi.org/10.14214/sf.1119
Keywords: biodiversity; Pinus sylvestris plantation; overstorey-understorey interaction; biotic homogenization; Leucobryo-Pinetum community
Highlights: Understorey plant species diversity significantly increases with the age of a Scots pine stand; Biomass of mosses decreases by a quarter, while biomass of herbs increases several times; Total understorey’s carbon stock increases over three times. The highest amount of carbon is accumulated in understorey species like Vaccinium myrtillus and Dicranum polysetum; The growing proportion of vascular plants in the understorey biomass results in an increase in the understorey C/N ratio.
Abstract | Full text in HTML | Full text in PDF | Author Info
The purpose of this study was to examine how the age of a stand of post-agricultural Scots pine forests affects the species composition, biomass and the carbon stock of the forest understorey. The community structure and species composition were studied in 75 plots (100 m2 in size), the amount of biomass, organic carbon and total nitrogen were analysed in 75 subplots (1/16 m2 in size). The plots were located in 21 plantations with the stand age of 41–60, 61–80 and over 80-years. Results show that the understorey species diversity increased with the increasing age of Scots pine stands, and the structure and species composition of secondary forests (although managed for timber production) became similar to the fresh pine forest of the European temperate region (Leucobryo-Pinetum community). Despite the increasing species diversity, however, only six understorey vascular and moss species played an important role in the biomass accumulation and C sequestration. Due to the differences in the dominant species composition, the total amount of understorey biomass significantly differed among the forest stands. The mean moss biomass ranged from 3046 kg ha–1 in 41–60-year-old stands, trough 2686 kg ha–1 in 61–80-year-old stands to 2273 kg ha–1 in over 80-year-old stands, and the mean understorey vascular plant biomass amounted to 2 kg ha–1, 1924 kg ha–1 and 3508 kg ha–1, respectively. The concentration of organic C varied considerably between species; it was the highest in Vaccinium myrtillus (50.6%) and in Dicranum polysetum (49.5%). The total mass of C was nearly 800 kg ha–1 in the youngest forests, in the subsequent age series it was two times higher and 3.5 times higher in the oldest ones. Differences in the species composition and in the C/N ratio in different species (generally higher for vascular plants and lower for mosses) were expressed in an increase in the understorey C/N ratio, which was 39.5, 46.6 and 48.6, respectively.
  • Woziwoda, Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland E-mail: woziwoda@biol.uni.lodz.pl (email)
  • Parzych, Environmental Chemistry Research Unit, Institute of Biology and Environmental Protection, Pomeranian University in Słupsk, Arciszewskiego 22b, 76-200 Słupsk, Poland E-mail: parzycha1@op.pl
  • Kopeć, Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland E-mail: domin@biol.uni.lodz.pl
article id 1107, category Research article
Arvo Tullus, Arne Sellin, Priit Kupper, Reimo Lutter, Linnar Pärn, Anna K. Jasinska, Meeli Alber, Maarja Kukk, Tea Tullus, Hardi Tullus, Krista Lõhmus, Anu Sõber. (2014). Increasing air humidity – a climate trend predicted for northern latitudes – alters the chemical composition of stemwood in silver birch and hybrid aspen. Silva Fennica vol. 48 no. 4 article id 1107. https://doi.org/10.14214/sf.1107
Keywords: climate change; Betula; Populus; macronutrients; atmospheric humidity; wood characteristics; structural carbohydrates
Highlights: Hybrid aspen and silver birch trees grew more slowly under increased air humidity conditions and had higher concentrations of N and P and a lower K to N ratio in stemwood; Minor species-specific changes were detected in stemwood concentrations of cellulose and hemicellulose; Density, calorific value and concentrations of lignin and ash in stemwood were not affected by elevated humidity.
Abstract | Full text in HTML | Full text in PDF | Author Info
We studied the physicochemical properties of stemwood in saplings of silver birch (Betula pendula Roth) and hybrid aspen (Populus tremula L. × P. tremuloides Michx.), grown for four years under artificially elevated relative air humidity (on average by 7%) in field conditions, using the Free Air Humidity Manipulation (FAHM) research facility in Estonia. Altogether 91 sample trees from three experimental plots with manipulated air humidity and from three control plots were cut in the dormant season and sampled for the analysis of cellulose, hemicellulose, acid detergent lignin, macronutrients (N, P, K), ash content, density, and calorific value of wood. The analysed trees grew significantly more slowly under elevated humidity conditions, with a more pronounced effect on aspens. Significantly higher concentrations of N and P were observed in the stemwood of both aspens and birches grown under elevated humidity. This could be the result of a change in the content of living parenchyma cells and/or enhanced retranslocation of nutrients into wood parenchyma. Additionally, humidification resulted in a significantly higher concentration of cellulose and a lower concentration of hemicellulose in aspen stemwood, and in significantly lower concentrations of cellulose and K in birch stemwood. Elevated humidity did not affect lignin concentration, ash content, basic density and calorific value of stemwood. Results from the FAHM experiment suggest that the increasing air humidity accompanying global warming at northern latitudes will affect the growth and functioning of deciduous trees and forests, with obvious consequences also for forest management and industry.
  • Tullus, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia E-mail: arvo.tullus@ut.ee (email)
  • Sellin, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia E-mail: arne.sellin@ut.ee
  • Kupper, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia E-mail: priit.kupper@ut.ee
  • Lutter, Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51014, Estonia E-mail: reimo.lutter@emu.ee
  • Pärn, Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51014, Estonia E-mail: linnar.parn@emu.ee
  • Jasinska, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia & Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland E-mail: jasiak9@wp.pl
  • Alber, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia E-mail: meeli.alber@ut.ee
  • Kukk, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia E-mail: maarja.kukk@ut.ee
  • Tullus, Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51014, Estonia E-mail: tea.tullus@emu.ee
  • Tullus, Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51014, Estonia E-mail: hardi.tullus@emu.ee
  • Lõhmus, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia E-mail: krista.lohmus@ut.ee
  • Sõber, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia E-mail: anu.sober@ut.ee

Category : Research note

article id 1145, category Research note
Juha Siitonen. (2014). Ips acuminatus kills pines in southern Finland. Silva Fennica vol. 48 no. 4 article id 1145. https://doi.org/10.14214/sf.1145
Keywords: tree mortality; Scots pine; Ips acuminatus; Phaenops cyanea; drought
Highlights: Recently dead pines colonized by Ips acuminatus were frequently found in southern Finland, in a region where the species was thought to be absent; Colonized trees were typically large (average DBH 30 cm), located at open spots in pine-dominated stands, often forming groups of several trees; The damages may be a consequence of dry and hot summers during the 2000s.
Abstract | Full text in HTML | Full text in PDF | Author Info
Recently dead Scots pines (Pinus sylvestris L.) apparently killed by Ips acuminatus (Gyllenhal) were observed in Sipoo, southern Finland, in summer 2013. This record was unexpected and in contradiction with what is currently known about the distribution and aggressiveness of the species in Finland. The aim of this study was to survey a larger area in Uusimaa region, to find out whether I. acuminatus occurs frequently in recently dead pines, and whether inhabited trees share some common tree- or site-level characteristics. Galleries of I. acuminatus were found in most of the studied trees. A total of 96 inhabited trees were found in 21 separate sites. Colonized pines were typically large (average DBH 30 ± 9 cm) trees located in relatively open pine-dominated heathland stands at half-open, sun-exposed spots. The whole upper part of the trunk with thin bark was usually occupied. Galleries of Tomicus piniperda L. or T. minor Hartig occurred only in few cases in the same trees, indicating that the trees had died later in the summer. Galleries of the jewel beetle Phaenops cyanea F. were found in 13 trees. Trees colonized by I. acuminatus often occurred as small groups, with generally 1­–12 trees (average 3 trees), but in one exceptional group there were no less than 35 trees. It is possible that the hot and dry summers during the 2000s have increased the susceptibility of pines to insect damage, and have contributed to a population growth of I. acuminatus.
  • Siitonen, Finnish Forest Research Institute, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: juha.siitonen@metla.fi (email)

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles