Category :
Article
article id 5620,
category
Article
Anne Toppinen.
(1997).
Testing for Granger-causality in the Finnish roundwood market.
Silva Fennica
vol.
31
no.
2
article id 5620.
https://doi.org/10.14214/sf.a8521
Abstract |
View details
|
Full text in PDF |
Author Info
The existence and direction of causal relationships between the time series for the Finnish roundwood market for the period 1960–1994 is tested. Using simple bivariate analysis, we found evidence that for both logs and pulpwood, the lagged prices are helpful in forecasting quantity for the next year, but not vice versa. Saw log stumpage prices have significantly Granger-caused pulpwood prices over the business cycles, but the effect has diminished towards the present time. For quantities traded, the direction of causality was rather from pulpwood to saw logs. The consistency of bivariate test results was checked by the Granger-causality tests within trivariate VAR-models for both markets, and the results were found to be fairly similar to bivariate tests. The price fluctuations in the international markets for forest products have been found to be carried to domestic wood markets dominantly via the pulpwood part of the market.
-
Toppinen,
E-mail:
at@mm.unknown
article id 5382,
category
Article
Abstract |
View details
|
Full text in PDF |
Author Info
The study aimed at recognizing the phases of forest succession where dead trees most probably occur. The model simulations showed that the increasing occurrence of dead trees culminated after the canopy closure. Thereafter the occurrence of dead trees decreased representing a pattern where high frequency of dead trees was followed by low frequency of dead trees, the intervals between the peaks in the number of dead trees being in Southern Finland about 15–30 years. Around this long-term variation there was a short-term variation, the interval between the peaks in the number of dead trees being 2–4 years. This pattern was associated with the exhausting and release of resources controlled by the growth and death of trees.
The PDF includes an abstract in Finnish.
-
Kellomäki,
E-mail:
sk@mm.unknown
-
Kolström,
E-mail:
tk@mm.unknown
-
Väisänen,
E-mail:
hv@mm.unknown
-
Valtonen,
E-mail:
ev@mm.unknown
Category :
Article
article id 7658,
category
Article
Lauri Hetemäki.
(1990).
Factor substitution in the Finnish pulp and paper industry.
Acta Forestalia Fennica
no.
211
article id 7658.
https://doi.org/10.14214/aff.7658
Abstract |
View details
|
Full text in PDF |
Author Info
The study examines the factor demands of the Finnish pulp and paper industry. In the theoretical part of the study, factor demand equations are derived using neoclassical production theory. In the empirical part, econometric factor demand model is estimated using annual time-series data for the period 1960–86. The relationship of factor demands and their prices are examined in terms of own price, cross price and substitution elasticities.
It is assumed that the ”representative firm” in the pulp and paper industry is minimizing its costs of production at a given output level. In addition, a number of other assumptions are made which enable the production technology to be represented by a cost function, in which the inputs are capital, labour, energy and raw materials. From the cost function, the factor demand equations, i.e., the cost share equations are derived by applying Shephard’s lemma. The equations are transformed to estimable form using translog approximation for the underlying factor share functions.
The study differs from the previous factor demand studies by applying the error correction model based on the Granger Representation Theorem and the results of the cointegration literature to model the dynamics of the factor demand. This approach provides a statistically consistent method for estimating the long-run static factor demand equations and the corresponding short-run equations. In general, the econometrics of integrated processes (e.g. stationarity and cointegration tests) applied in the present study have not been applied before in factor demand systems models.
The empirical results of the study indicate that the error correction approach can be applied to estimations of the factor demands for the pulp and paper industry. In both industry sectors, the adjustment to short run disequlibrium (price shocks) appears to be fairly rapid. The most significant results of the calculated elasticities are that the factor demands of pulp and paper industries clearly react to changes in factor prices and that there are significant substitution possibilities between the different inputs. The absolute values of the elasticities are, on average, somewhat larger than have been obtained in previous studies.
The PDF includes a summary in Finnish.
-
Hetemäki,
E-mail:
lh@mm.unknown
Category :
Research article
article id 1159,
category
Research article
Highlights:
In standard cutting stands and thinning areas with windbreaks there occurred three-activity operational cycles. In mature stands with windbreaks the occurrence of stable sequences supplemented with five-activity cycles was noted. Consequently, the operational time in post-disaster thinning stands should be increased by 55% whereas in mature stands it should be 30% longer in comparison with standard stands.
Abstract |
Full text in HTML
|
Full text in PDF |
Author Info
The aim of the study was to characterize repetitive cycles of harvester operation. The study was conducted in thinning, mature and post-disaster pine stands. The sequences of the activities characteristic of harvester operation were described as time series. In order to detect the cyclic variable structure of the analysed time series, the methodology of the single spectrum Fourier analysis was applied. In standard stands, post-disaster late-thinning stands and mature stands, the existence of stable operational cycles with the length of three activities was discovered while in post-disaster mature stands additional five-activity operational phases were noted. Described in this way, the lengths of the operational cycles of harvesters working in post-disaster areas were higher by about 55% and 30% respectively, as compared to standard thinning and mature stands.
-
Szewczyk,
University of Agriculture in Krakow, Faculty of Forestry, Institute of Forest Utilization and Forest Technology, Department of Forest and Wood Utilization, Al. 29-Listopada 46, 31-425 Krakow, Poland
E-mail:
rlszewcz@cyf-kr.edu.pl
-
Sowa,
University of Agriculture in Krakow, Faculty of Forestry, Institute of Forest Utilization and Forest Technology, Department of Forest and Wood Utilization, Al. 29-Listopada 46, 31-425 Krakow, Poland
E-mail:
rlsowa@cyf-kr.edu.pl
-
Grzebieniowski,
University of Agriculture in Krakow, Faculty of Forestry, Institute of Forest Utilization and Forest Technology, Department of Forest and Wood Utilization, Al. 29-Listopada 46, 31-425 Krakow, Poland
E-mail:
wrzoswj@interia.pl
-
Kormanek,
University of Agriculture in Krakow, Faculty of Forestry, Institute of Forest Utilization and Forest Technology, Department of Forest Work Mechanisation, Al. 29-Listopada 46, 31-425 Krakow, Poland
E-mail:
rlkorma@cyf-kr.edu.pl
-
Kulak,
University of Agriculture in Krakow, Faculty of Forestry, Institute of Forest Utilization and Forest Technology, Department of Forest and Wood Utilization, Al. 29-Listopada 46, 31-425 Krakow, Poland
E-mail:
rlkulak@cyf-kr.edu.pl
-
Stańczykiewicz,
University of Agriculture in Krakow, Faculty of Forestry, Institute of Forest Utilization and Forest Technology, Department of Forest and Wood Utilization, Al. 29-Listopada 46, 31-425 Krakow, Poland
E-mail:
rlstancz@cyf-kr.edu.pl
article id 370,
category
Research article
Pekka Tamminen,
John Derome.
(2005).
Temporal trends in chemical parameters of upland forest soils in southern Finland.
Silva Fennica
vol.
39
no.
3
article id 370.
https://doi.org/10.14214/sf.370
Abstract |
View details
|
Full text in PDF |
Author Info
Changes in chemical soil properties during periods of 12 to 28 years were studied in 54 stands in southern Finland. Relative slopes (%/year) were calculated for the changes in soil variables in order to utilise all the sampling occasions (2–6) covered by the study period. Only the results of new analyses made on the soil samples could be used owing to unpredictable differences between the results of the original and new analyses. During the study period the acidity (pH, exchangeable acidity) of the organic layer had decreased, and the mineral soil had become more acidic only in terms of increased exchangeable aluminium concentrations. An increasing trend in the amount of soil organic matter best explained the acidity variables: it lowered acidity in the organic layer, but increased it in the mineral soil. Acid ammonium acetate extractable nutrients showed decreasing trends over time, apart from an increasing trend for sulphur in the 0–30 cm mineral soil layer. Total concentrations of most elements in the organic layer, including nitrogen and sulphur, also showed a decreasing trend. Changes in the soil variables could not be firmly connected to deposition, wood production or the amount of nutrients accumulated in woody tissues. However, the decrease in sulphur concentrations in the organic layer was clearly linked with the decrease in sulphur deposition in recent years.
-
Tamminen,
Finnish Forest Research Institute, Vantaa Research Centre, P.O. Box 18, FI-01301 Vantaa, Finland
E-mail:
pekka.tamminen@metla.fi
-
Derome,
Finnish Forest Research Institute, Rovaniemi Research Station, P.O. Box 16, FI-96301 Rovaniemi, Finland
E-mail:
jd@nn.fi
article id 647,
category
Research article
Tapio Linkosalo.
(1999).
Regularities and patterns in the spring phenology of some boreal trees.
Silva Fennica
vol.
33
no.
4
article id 647.
https://doi.org/10.14214/sf.647
Abstract |
View details
|
Full text in PDF |
Author Info
Phenological time series of flowering and bud burst of Populus tremula (L.) and Betula sp., and the flowering of Pinus sylvestris (L.), Alnus glutinosa (L.) and Alnus incana (L.) were constructed from data collected in Finland during the period 1896–1955. The resulting combined time series were examined with two aims in mind: first, to determine the phenological regularities between different species and, second, to detect patterns of spring advancement over a geographically large area. The results indicate that the geographical pattern of spring advancement is rather uniform from year to year, and between different species. Furthermore, the mechanisms regulating the timing of phenological events in different species seem to function in a similar way, suggesting an unanimous optimal response to climatic conditions.
-
Linkosalo,
University of Helsinki, Department of Forest Ecology, Unioninkatu 40 B, P.O. Box 24, FIN-00014 University of Helsinki, Finland
E-mail:
tapio.linkosalo@helsinki.fi
Category :
Climate resilient and sustainable forest management – Review article
article id 23076,
category
Climate resilient and sustainable forest management – Review article
Joanne C. White.
(2024).
Characterizing forest recovery following stand-replacing disturbances in boreal forests: contributions of optical time series and airborne laser scanning data.
Silva Fennica
vol.
58
no.
2
article id 23076.
https://doi.org/10.14214/sf.23076
Highlights:
Remote sensing contributions to monitoring of post-disturbance forest recovery in the boreal are synthesized; Definitions of forest recovery need to be clear and measurable and will vary by application; Landsat time series represent a significant innovation in recovery assessments, but the boreal biome is underrepresented in this research; Opportunities for future research directions and priorities are highlighted.
Abstract |
Full text in HTML
|
Full text in PDF |
Author Info
The success and rate of forest regeneration following disturbance has implications for sustainable forest management, climate change mitigation, and biodiversity, among others. Systematic monitoring of forest regeneration over large and often remote areas of the boreal forest is challenging. The use of remotely sensed data to characterize post-disturbance recovery in the boreal forest has been an active research topic for more than 30 years. Innovations in sensors, data policies, curated data archives, and increased computational power have enabled new insights into the characterization of post-disturbance forest recovery, particularly following stand-replacing disturbances. Landsat time series data have emerged as an important data source for post-disturbance forest recovery assessments, with Landsat’s 40-year archive of 30-m resolution data providing consistent observations on an annual time step and enabling retrospective capacity to establish spatially explicit recovery baselines. The application of remote sensing for monitoring post-disturbance forest recovery is a rapidly growing area of research globally; however, despite the large amount of disturbance and the disproportionate effects of climate change in the boreal, the boreal biome is relatively underrepresented in the remote sensing forest recovery literature. Herein, the past and present contributions of optical time series and airborne laser scanning data to the characterization of forest recovery in boreal forests are highlighted, and future research priorities are identified.
-
White,
Canadian Forest Service, Pacific Forestry Centre, Natural Resources Canada, 506 West Burnside Road, Victoria, B.C., V8Z 1M5, Canada
https://orcid.org/0000-0003-4674-0373
E-mail:
joanne.white@nrcan-rncan.gc.ca
Category :
Research note
article id 9986,
category
Research note
Highlights:
The 45-year Landsat archive contained 30 076 images for Finland by December 31, 2017; 16.3% of these were acquired within ±30 days of August 1 (northern hemisphere summer), have <70% cloud cover, and a 30 m spatial resolution; Using time series analyses, these data provide unique information that complements other datasets available for forest monitoring and assessment in Finland.
Abstract |
Full text in HTML
|
Full text in PDF |
Author Info
There is growing interest in the use of Landsat data to enable forest monitoring over large areas. Free and open data access combined with high performance computing have enabled new approaches to Landsat data analysis that use the best observation for any given pixel to generate an annual, cloud-free, gap-free, surface reflectance image composite. Finland has a long history of incorporating Landsat data into its National Forest Inventory to produce forest information in the form of thematic maps and small area statistics on a variety of forest attributes. Herein we explore the spatial and temporal characteristics of the Landsat archive in the context of forest monitoring in Finland. The United States Geological Survey Landsat archive holds a total of 30 076 images (1972–2017) for 66 scenes (each 185 km by 185 km in size) representing the terrestrial area of Finland, of which 93.6% were acquired since 1984 with a spatial resolution of 30 m. Approximately 16.3% of the archived images have desired compositing characteristics (acquired within August 1 ±30 days, <70% cloud cover, 30 m spatial resolution). Data from the Landsat archive can augment forest monitoring efforts in Finland, provide new information for science and applications, and enable retrospective, systematic analyses to characterize the development of Finnish forests over the past three decades. The capacity to monitor trends based upon this multi-decadal record with the addition of new measurements is of benefit to multisource inventories and offers nationally comprehensive spatially-explicit datasets for a wide range of stakeholders and applications.
-
Saarinen,
Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland; School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
https://orcid.org/0000-0003-2730-8892
E-mail:
ninni.saarinen@helsinki.fi
-
White,
Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland; Canadian Forest Service, (Pacific Forestry Center), Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada
http://orcid.org/0000-0003-4674-0373
E-mail:
joanne.white@canada.ca
-
Wulder,
Canadian Forest Service, (Pacific Forestry Center), Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada
https://orcid.org/0000-0002-6942-1896
E-mail:
mike.wulder@canada.ca
-
Kangas,
Natural Resources Institute Finland (Luke), Bioeconomy and environment, Yliopistokatu 6, FI-80100 Joensuu, Finland
E-mail:
annika.kangas@luke.fi
-
Tuominen,
Natural Resources Institute Finland (Luke), Bioeconomy and environment, Latokartanonkaari 9, FI-00790 Helsinki, Finland
E-mail:
sakari.tuominen@luke.fi
-
Kankare,
Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland
E-mail:
ville.kankare@helsinki.fi
-
Holopainen,
Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland
E-mail:
markus.holopainen@helsinki.fi
-
Hyyppä,
Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, National Land Survey of Finland, Geodeetinrinne 2, FI-02431 Masala, Finland
E-mail:
juha.hyyppa@nls.fi
-
Vastaranta,
School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
https://orcid.org/0000-0001-6552-9122
E-mail:
mikko.vastaranta@uef.fi