This paper reports on the possibility and difficulties in building growth models from past Forest Administration records on cut and growth in the Italian Alps. As a case study, a matrix model was calibrated for uneven-aged forests in the Valsugana valley of the Trentino province. The model gave reliable predictions over 30 years, and plausible long-term forest dynamics, including steady-states that are similar to virgin forests. The results support the view that the current forests are deeply altered as to composition, relative to what would obtain from natural growth. They also support the concept of long cyclic changes in natural stands, gradually approaching a climax state. Shortcomings of the data are that they do not come from an experimental design, they are not always accurate, and they must be supplemented with other information, especially concerning mortality. Still, these cheap and available data can lead to workable models adapted to local conditions, with many management applications.
The colonisation of a burned clear-cut by ants in southern Finland was monitored using pitfall traps, artificial nest sites, and direct nest sampling from the ground and stumps. Clearcutting and fire seemed to have destroyed wood-ant colonies (Formica rufa group), and also other mature-forest species suffered from fire. Myrmica ruginodis Nylander was able to survive only in less severely burned moist sites, whereas it benefitted from the enhanced light conditions in a non-burned clear-cut. The fire resulted in an essentially ant-free terrain into which pioneering species immigrated. The mortality of nest-founding queens appeared to be high. The results supported the hypothesis that the pioneering species tend to be those that are capable of independent colony founding, followed by species founding nests through temporary nest parasitism. The succession of the burned clear-cut differed from that of the non-burned one, suggesting that habitat selection in immigration and priority effects, i.e. competition, introduce deterministic components in the successional pathways of boreal ant communities.
Postfire recovery of species diversity (including a number of species, entropy of species relative coverage (Shannon index of species diversity) was studied in lichen and green moss site types of Scots pine (Pinus sylvestris L.) forests in the central part of the Kola Peninsula. The results obtained indicate the difference in the dynamics of characteristics of biodiversity of forest components during postfire recovery. The stabilization of separate components of forest community varies in time from 5–15 to 120–140 years after the fire. Characteristics of the dwarf shrub and herb stratum recovered and stabilized 5–15 years after fire, while the complete stabilization of characteristics of moss-lichen cover is observed in community with fire ages of 90–140 years. Species richness of tree stratum recovered 120–140 years after fire. Time of complete stabilization of species richness of the community was estimated 120–140 years after fire. The size of the area over which characteristics of the biodiversity were estimated effected the mean values and, in most cases, the character of variation of studied characteristics. Over an area of 1 x 1 m dynamics of characteristics of species diversity coincide in forests of the studied types. Regardless of forest type within the area of 100 m2 species richness recovered 30 years after the fire (i.e. 3–5 times earlier than the establishment of the complete stabilization of the forest structure). That means that floristic composition of the forest remained unchanged from 30 to 210 years after the fire.
A model for the succession of the forest ecosystem is described. The growth and development of trees and ground cover are controlled by temperature and light conditions and the availability of nitrogen and water. In addition, the effects of the annual cycle of trees including the risk of frost damage, wild fire, and wind damages are contained in the model as factors which control the survival and productivity of trees. The model also makes it possible to evaluated the risk of insect attack assuming that this risk is inversely related to the growth efficiency of trees.
The PDF includes an abstract in Finnish.
The study aimed at recognizing the phases of forest succession where dead trees most probably occur. The model simulations showed that the increasing occurrence of dead trees culminated after the canopy closure. Thereafter the occurrence of dead trees decreased representing a pattern where high frequency of dead trees was followed by low frequency of dead trees, the intervals between the peaks in the number of dead trees being in Southern Finland about 15–30 years. Around this long-term variation there was a short-term variation, the interval between the peaks in the number of dead trees being 2–4 years. This pattern was associated with the exhausting and release of resources controlled by the growth and death of trees.
The PDF includes an abstract in Finnish.
The occurrence of Caleopsis bifida on clear-cut and burned forest soil and its disappearance in 4–6 years after disturbance is attributed to its germination ecology. Initially the seeds are dormant 96–100% and remain dormant in nylon gaze bags in different types of forest humus layers at least 10 years. Dormancy is released in laboratory (1) by treatment of 100 ppm aqueous solution of GA3, (2) by heating the dormant seeds to 40–55°C for 1–5 h, and (3) by 1% KNO3 solution. It is concluded that conditions in clear-cut and burned areas favour germination of seeds in regard to temperature and content of nitrates in contrast to humus of closed vegetation where the seeds remain dormant.
The PDF includes an abstract in Finnish.
This study deals with the succession of vegetation and tree stand in 16 mesic Myrtillus site type Scots pine (Pinus sylvestris L.) plantations after prescribed burning in Evo, Southern Finland. The oldest tree stands studied were about 30-year-old. The growth of trees followed the height index of Myrtillus type. The vegetation was first mesic, dominated by grasses and herbs, turning more xeric after four years. This change was accelerated by treatment with herbicides. After the closure of tree stand, vegetation became more characteristic of forest vegetation, but pioneer species and composition disappeared slowly. The basic characters of vegetation succession could be clearly described by DCA ordination and TWINSPAN classification. The study confirmed that Myrtillus type has succession phases which are typical for each age phases as Cajander’s forest site type theory has proposed. However, differences in primary and secondary site factors have their own effects on the vegetation of the succession phases.
The PDF includes an abstract in Finnish.
The structural matter production of selected plant species of a ground cover community was determined in relation to light available for photosynthesis. The resulting functions were applied in a situation where the light reaching the ground cover was controlled by the dynamics of the tree crown strata, and the occurrence of different plant species at different stages of succession was determined on the basis of their production of structural matter in actual light conditions. The possible strategies involved in adaptation to a successional environment have been discussed.
The PDF includes a summary in Finnish.
Silva Fennica Issue 64 includes presentations held in 1947 in the third professional development courses, arranged for foresters working in the public administration. The presentations focus on practical issues in forest management and administration, especially in regional level. The education was arranged by Forest Service. Two of the presentations were published in other publications than Silva Fennica.
This presentation describes how the natural processes of forests and succession could be utilized in forest management and silviculture.
The aim of the study was to follow development of vegetation in dry upland forest sites after forest fire. The sample sites were situated in the counties of Muonio, Kolari, Sodankylä, Pelkosenniemi, Savukoski, Kemijärvi and Salla, in the northernmost Finland.
The growth of plant communities can arise either from the vegetation and seeds that survived the fire, or from seeds that spread from the surrounding areas. The development of vegetation in the burned areas was unexpectedly independent of the surrounding areas, which indicates that role of the seeds from the outside of the burned ares is small. The occurence of different species of lichens, moss, scale moss and vascular plants in the burned areas are described in detail. The development of vegetation was strongly dependent on the forest site type. The thin humus layer of Cladina site type burns usually evenly, and also the vegetation develops more evenly than in the more fresh site types. Vegetation typical for burned areas was fully developed within 10-15 years, and after 25 years it began to resemble the vegetation of Cladina site type forests. The ground vegetation of Calluna type burned area was more patchy. It developed quicker than in Cladina type. Absense of lichens made it seem more fertile than is usual for Calluna type. The humus layer of Empetrum-Myrtillus site type burned unevenly, and if the area was lightly burned, the vegetation recovered quickly. The vegetation was often patchy.
The PDF includes a summary in German.
According to studies following the development of vegetation of drained peatlands, it seems that they have transformed to a relatively stable plant communities during the succession. In earlier studies it was assumed that after drainage a mire type would develop to a corresponding forest site. This investigation studies what kinds of plant communities are formed during succession of different mire types on peatlands drained for forestry in the southern half of Finland. Understorey vegetation was studied in 18 sample plots established by Forest Research Institute on drained peatlands. In addition, sample plots were studied on peatlands in natural state.
The results suggest that understorey vegetation on peatlands drained for forestry have developed into plant communities, the most advanced of which are the so-called dry plant communities. They represent transformed site types, which are the following: drained peatlands with upland herb-rich vegetation, drained peatlands with upland grass-herb vegetation, drained peatlands with upland Myrtillus site type vegetation, drained peatlands with upland Vaccinium site type vegetation, and drained peatlands with upland Calluna site type vegetation. Drained peatlands with upland Cladonia site type vegetation seem to be a temporary type caused by incomplete drainage. The transition between Myrtillus and Vaccinium dominated dry plant communities is not clear, but especially the pure Vaccinium vitis-ideae communities justify its place as an independent plant community. The dry drwarf shrub plant communities are also stable.
The PDF includes a summary in German.
According to the National Forest Inventory of Finland, the age structure of forests in Northern Finland require large-scale fellings. One of the problems is regeneration of low-productive Norway spruce (Picea abies (L.) Karst.) forests in the area. The objectives of this investigation were to study the natural development of Hylocomnium-Myrtillus (HMT) type Norway spruce forests in Northern Finland and the ecological causes of the development. A total of 83 sample plots were studied in 1950-52. The stands were chosen to have a total effective temperature during growing season between 600-800 ºC.
According to the results, the HMT type forests represent secondary developmental stages of the northern Myrtillus type, characterized by tree stands of poor quality. By returning the habitats that have reached their secondary stages to their primary stage, e.g. by means of fires, the potential site quality is restored. The climax theory is inapplicable to the Northern Finland’s spruce stands on fresh site types. The natural development of HMT follows not the climax theory, i.e. a return in each succession to the same type stage expressing the same site quality. One reason is accumulation of the thick humus layer, caused by incomplete decomposition of litter. The humus binds nutrients inaccessible to the trees, and the substratum becomes cold, more acid, and moist.
These forests should be managed by clear-cutting, burning-over and artificial regeneration. When thinning the stands, at least a slight mixture of deciduous trees must be left in the stand.
The article is divided into two separate PDFs. The second PDF is in a supplementary file and includes a summary in Finnish.
The tendency of successional development from young vegetation, rich in species and exposed to chance factors, towards regular plant communities, is found all around the world. Thee ecological groups of trees seem to be present in all forest regions in the world, namely the pioneer and the climax species, and a group of pre-climax species that can be ecologically either near the pioneer or the climax species. The succession of tree species in forest always leads to a climax stand, determined by climate, quality of soil and the mutual biotical strengths of the tree species in the region.
This division into ecological groups greatly facilitates choosing among different methods of treating stands and understanding the silvicultural methods of foreign regions. Stands formed by species of the same group must follow the same lines in their silvicultural treatment. For instance, mixed stand consisting of both pioneer and climax species represents a transition stage, in which the climax species strive for dominating position, and preservation of pioneer species is difficult. This indicates the broad lines for management of the stand. Also, regeneration methods of pioneer and climax species must be different. Studying the succession of natural forests can be used as a means to reach the highest possible silvicultural level. This is one reason why the preservation and study of virgin forests still in existence is indispensable.
The PDF includes a summary in Finnish.
In different altitudes of the Mount Fuji in Japan occur succession of different tree species. For instance, at an altitude of 2,000 meters are pure stands of Tsuga diversifolia (Maxim.), under which is generally found young trees of Abies veitchii (Lindl.), but not of Tsuga. Abies veitchii is in its turn replaced perhaps with Larix sp. The succession of the forests of the volcano have reached maturity, which is not the case in the east–north-east flank of the mountain, where the Hōei eruption destroyed all vegetation in 1707. The vegetation had not revived even by the 1920s. The Hōei eruption site is compared to the much faster return of vegetation in mount Krakatau in the warmer tropical region. The succession of forests in the other parts of the mountain is described in detail. Finally, a succession theory is proposed that is opposed to the natural selection theory. The theory suggests that there is an Innermost Factor that controls the plant succession. According to the theory, every species, every formation, should die its natural death owing to the Innermost Factor.
The volume 34 of Acta Forestalia Fennica is a jubileum publication of professor Aimo Kaarlo Cajander.
The resilience of closed-crown coniferous stands within the boreal forest of North America is highly dependent on successful re-establishment of tree species following fire. A shift from closed-crown forest to open lichen woodland is possible following poor natural regeneration during the initial establishment phase, followed by the development of extensive lichen cover, which may hinder ongoing recruitment. We examined the development of the crustose lichen Trapeliopsis granulosa (Hoffm.) 18 to 21 years following fire within six sites in the boreal forest of northwestern Quebec, and explored its potential to affect ongoing recruitment during early successional stages of stand development. Germination and survivorship trials were conducted within the laboratory to determine the establishment rate of Pinus banksiana Lamb. (jack pine) on T. granulosa, mineral soil, and burnt duff under two separate watering frequencies (observed and drought). Survival and establishment rates of jack pine were highest on burnt duff, and poor on both T. granulosa and mineral soil. Under the drought treatment, no seedlings survived on any substrates. In the field, T. granulosa cover had a positive relationship with mineral soil cover, and negative relationships with duff cover, ericaceous shrub cover, organic layer depth, other lichen cover, and Sphagnum moss cover. No discernable relationship was found between T. granulosa and tree density, rock cover, dead wood cover or other moss cover. The development of extensive T. granulosa cover in fire-initiated stands can impede ongoing recruitment of conifer species due to its poor seedbed quality, thereby maintaining open forests.