Current issue: 58(4)
According to a recently presented hypothesis, the predicted climatic warming will cause height growth onset of trees during mild spells in winter and heavy frost damage during subsequent periods of frost in northern conditions. The hypothesis was based on computer simulations involving a model employing air temperature as the only environmental factor influencing height growth onset. In the present study, the model was tested in the case of eastern Finnish Scots pine (Pinus sylvestris L.) saplings. Four experimental saplings growing on their natural site were surrounded by transparent chambers in autumn 1990. The air temperature in the chambers was raised during the winter to present an extremely warm winter under the predicted conditions of a double level of atmospheric carbon dioxide. The temperature treatment hastened height growth onset by two months as compared to the control saplings, but not as much as expected on the basis of the previous simulation study. This finding suggests that 1) the model used in the simulation study needs to be developed further, either by modifying the modelled effect of air temperature or by introducing other environmental factors, and 2) the predicted climatic warming will not increase the risk of frost damage in trees as much as suggested by the previous simulation study.
The PDF includes an abstract in Finnish.
A model for the succession of the forest ecosystem is described. The growth and development of trees and ground cover are controlled by temperature and light conditions and the availability of nitrogen and water. In addition, the effects of the annual cycle of trees including the risk of frost damage, wild fire, and wind damages are contained in the model as factors which control the survival and productivity of trees. The model also makes it possible to evaluated the risk of insect attack assuming that this risk is inversely related to the growth efficiency of trees.
The PDF includes an abstract in Finnish.