A model for the succession of the forest ecosystem is described. The growth and development of trees and ground cover are controlled by temperature and light conditions and the availability of nitrogen and water. In addition, the effects of the annual cycle of trees including the risk of frost damage, wild fire, and wind damages are contained in the model as factors which control the survival and productivity of trees. The model also makes it possible to evaluated the risk of insect attack assuming that this risk is inversely related to the growth efficiency of trees.
The PDF includes an abstract in Finnish.
The reach of different tree species’ crowns and the velocity of gap closure during the occupation of canopy gaps resulting from mortality and thinning during stand development determine species-specific competition and productivity within forest stands. However, classical dendrometric methods are rather inaccurate or even incapable of time- and cost-effectively measuring 3D tree structure, crown dynamics and space occupation non-destructively. Therefore, we applied terrestrial laser scanning (TLS) in order to measure the structural dynamics at tree and stand level from gap cutting in 2006 until 2012 in pure and mixed stands of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.). In conclusion, our results suggest that Norway spruce invests newly available above-ground resources primarily into DBH as well as biomass growth and indicate a stronger resilience against loss of crown mass induced by mechanical damage. European beech showed a vastly different reaction, investing gains from additional above-ground resources primarily into faster occupation of canopy space. Whether our sample trees were located in pure or mixed groups around the gaps had no significant impact on their behavior during the years after gap cutting.