Current issue: 58(1)

Under compilation: 58(2)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Acta Forestalia Fennica vol. 76 no. 5 | 1963

Category : Article

article id 7145, category Article
Leo Heikurainen. (1963). Use of ground water table fluctuations for measuring evapotranspiration. Acta Forestalia Fennica vol. 76 no. 5 article id 7145. https://doi.org/10.14214/aff.7145
Keywords: drained peatlands; methods; ground water table; transpiration
Abstract | View details | Full text in PDF | Author Info

Lowering of the ground water table is caused by decrease in the amount of water because of evapotranspiration. Evapotranspiration of a forest is determined by converting a lowering of the ground water table into a decrease in the amount of water. This paper describes a method to determine the transpiration of tree stands and ground vegetation as well as total evaporation on a Finnish drained peatland, which ground water table was relatively high, by measuring the level of the ground water table.

It was shown that in drained peatlands with relatively high ground water level, the ground water table fell during the day between about 9 a.m. and 6 p.m., and remain at approximately same level during rest of the day. The fall of ground water table was caused by transpiration of the trees and ground vegetation, and could be over 20 mm. Thus, measuring the daily lowering of ground water table can be used to estimate transpiration of the trees. When the method is applied to measuring the total evaporation of longer periods of time, also rainfall, interception, stand rainfall and stemflow have to be measured. The method is applicable only on sites with relatively high ground water level.

The PDF includes a summary in Finnish.

  • Heikurainen, E-mail: lh@mm.unknown (email)

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles