This article is a book review on a book on forest inventory, ’Sampling Methods for Multiresource Forest Inventory’ by Hans T. Schreuder, Timothy G. Gregoire and Geoffrey B. Wood.
The first aim of this study was to develop a simulation model describing the flow of different timber qualities to different firms. The second aim was to study preliminary the factors which affect timber distributions. In addition, we tested the hypothesis that in a small sawmill firm the traditional way of organizing timber procurement does not direct effectively good quality logs to the special production. The game theoretic approaching and the principles of Monte-Carlo simulation were applied in development of the simulation model. The most important factors of the model were tried to find for further studies with sensitive analysis. Empirical validation brought forth promising results in the area of one municipality. The buyer’s awareness of a marked stand, the seller’s willingness to sell a marked stand, the buyer’s ability to pay for wood and the proportion of first quality pine logs in a marked stand affected the distribution of pine logs. The results also supported the hypothesis that the traditional system, in which sawmills or their own forest departments procure themselves all timber needed, is not the most effective way to direct enough good quality timber to the special production.
Much of forestry data is characterized by a longitudinal or repeated measures structure where multiple observations taken on some units of interest are correlated. Such dependencies are often ignored in favour of an apparently simpler analysis at the cost of invalid inferences. The last decade has brought to light many new statistical techniques that enable one to successfully deal with dependent observations. Although apparently distinct at first, the theory of Estimating Functions provides a natural extension of classical estimation that encompasses many of these new approaches. This contribution introduces Estimating Function Theory as a principle with potential for unification and presents examples covering a variety of modelling issues to demonstrate its applicability.
The following treatments were compared in three Scots pine (Pinus sylvestris L.) reforestation areas on a scarified moist mineral-soil site in southern Finland, planted with 1+1 bareroot stock in spring 1987: (a) no weed control treatment; (b) mulching with a fibre slurry produced by mixing wastepaper with water and applied 1 cm deep to an area of 60 cm in diameter around the seedling soon after planting; (c) glyphosate (at 2 kg ha-1) sprayed on a 1 m2 spot around the seedling in early August 1987; (d) terbuthylazine (at 10 kg ha-1) applied as (c). Monitoring of the trials over a 4-year period between 1987–90 showed that none of the treatments reduced surface vegetation to an extent that would have benefited pine. The percentage cover development of the vegetation, dominated by Agrostis capillaris, Calamagrostis arundinaceae, Deschampsia flexuosa, Festuca ovina, Epilobioum angustifolium and Pteridium aquillinum, followed much the same pattern in all treatments, with (c) slightly favouring forbs. Survival of pine at the end of the study period was about 90%, with non-significant differences between treatments. Mulching and terbuthylazine treatment slightly reduced seedling height growth in the second year. Growth was better in glyphosate treatment than in terbuthylazine treatment in the lowest (<30%) and the highest (>60%) pre-treatment weed cover classes, and in the latter also better than in untreated control. Mulching gave variable results; at its best it provided also good control of weeds for several years, without, however, improving the initial development of pine in these trials.
The effects of fertilized treatment on the soil nutrient concentrations, biomass production and nutrient consumption of Salix x dasyclados and Salix ’Aquatica’ were studied in five experiments on three cut-away peatland sites in western and eastern Finland during three years. Factorial experiments with all combinations of N (100 kg ha-1 a-1), P (30 kg ha-1 a-1) and K (80 kg ha-1 a-1) were conducted.
The application of P and K fertilizers increased the concentrations of corresponding extractable nutrients in the soil as well as in willow foliage. N-fertilization increased foliar nitrogen concentration. An increase in age usually led to decreases in bark and wood N, P and K concentrations and increases in bark Ca concentrations. N-fertilization increased the three-year biomass yield 1.5–2.7 times when compared to control plots. P-fertilization increased the yield only in those experimental fields whose substrates had the lowest phosphorus concentration. K-fertilization did not increase the yield in any of the experimental fields. The highest total biomass yield of NPK-fertilized willow after three growing seasons, 23 t ha-1, was distributed in the following way: wood 42%, bark 19%, foliage 17%, stumps 6% and roots 16%. As the yield and stand age increased, more biomass was allocated in above-ground wood. Three-year-old stands (above-ground biomass 18 t ha-1) contained as much as 196 kg N ha-1, 26 kg P ha-1, 101 kg K ha-1, 74 kg Ca ha-1 and 37 kg Mg ha -1. By far the highest proportion of nutrients accumulated in the foliage. The bark and wood contained relatively high proportions of calcium and phosphorus. With an increase in age and size, the amount of nitrogen and potassium bound in one dry-mass ton of willow biomass decreased while that of phosphorus remained unchanged.
Tree height data from 33 progeny trials of Scots pine (Pinus sylvestris L.) were used to determine the effect of within-plot subsampling on the magnitude of statistically detectable differences between families, family heritability and correlation of family means based on different sample sizes. The results indicated that in trials established with a standard plot configuration of 25 trees per plot, measuring only 10–15 trees gives nearly the same precision as with assessment of all the plot trees. Even as few as 4–6 trees assessed per plot may constitute a sufficient sample if families or parental trees of extreme performance are being selected. Trials established with non-contiguous plots were found to be more efficient than those established using multiple-tree contiguous plots.
Growth, crown structure, flowering and seed production of silver birch (Betula pendula Roth) seedlings, grafts and micropropagated plants was compared during four years in a polythene greenhouse experiment. The growth of the seedlings was clearly the most vigorous and that of the grafts the weakest, the micropropagated plants being intermediate. The seedlings had the highest and the grafts the lowest number of branches before cutting the tops of the plants, but the differences between the material types were no more significant after cutting the tops. The grafts had significantly shorter and thinner branches than the seedlings and the micropropagated plants, whereas the differences in branch length and branch thickness between the latter two groups were not significant. The grafts started flowering at the age of two years, one year earlier than the other two types of material. At the age of four years the micropropagated plants had abundant seed production, about 75% of that of the seedlings and about two times higher than that of the grafts. Thus, the micropropagated plants can be used instead of grafts when establishing polythene greenhouse seed orchards of birch.