Current issue: 58(4)

Under compilation: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Silva Fennica vol. 54 no. 5 | 2020

Category : Editorial

article id 10501, category Editorial
Hanne K. Sjølie. (2020). Why are there still too few women in forestry and science? Silva Fennica vol. 54 no. 5 article id 10501. https://doi.org/10.14214/sf.10501
Full text in HTML | Full text in PDF | Author Info
  • Sjølie, Inland Norway University of Applied Sciences, Postboks 400, 2418 Elverum, Norway E-mail: hanne.sjolie@inn.no (email)

Category : Research article

article id 10414, category Research article
Jouni Siipilehto, Micky Allen, Urban Nilsson, Andreas Brunner, Saija Huuskonen, Soili Haikarainen, Narayanan Subramanian, Clara Antón-Fernández, Emma Holmström, Kjell Andreassen, Jari Hynynen. (2020). Stand-level mortality models for Nordic boreal forests. Silva Fennica vol. 54 no. 5 article id 10414. https://doi.org/10.14214/sf.10414
Keywords: Norway spruce; Scots pine; simulation; broadleaved species; logistic function; period length; plot size
Highlights: Models were developed for predicting stand-level mortality from a large representative NFI data set; The logistic function was used for modelling the probability of no mortality and the proportion of basal area in surviving trees; The models take into account the variation in prediction period length and in plot size; The models showed good fit with respect to stand density, developmental stage and species structure, and showed satisfying fit in the independent data set of unmanaged spruce stands.
Abstract | Full text in HTML | Full text in PDF | Author Info

New mortality models were developed for the purpose of improving long-term growth and yield simulations in Finland, Norway, and Sweden and were based on permanent national forest inventory plots from Sweden and Norway. Mortality was modelled in two steps. The first model predicts the probability of survival, while the second model predicts the proportion of basal area in surviving trees for plots where mortality has occurred. In both models, the logistic function was used. The models incorporate the variation in prediction period length and in plot size. Validation of both models indicated unbiased mortality rates with respect to various stand characteristics such as stand density, average tree diameter, stand age, and the proportion of different tree species, Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.), and broadleaves. When testing against an independent dataset of unmanaged spruce-dominated stands in Finland, the models provided unbiased prediction with respect to stand age.

  • Siipilehto, Natural Resources Institute Finland (Luke), Natural resources, P.O. Box 2, FI-00790 Helsinki, Finland E-mail: jouni.siipilehto@luke.fi (email)
  • Allen, Norwegian Institute of Bioeconomy Research (NIBIO), Division of Forest and Forest Products, NO-1431 Ås, Norway; Larson and McGowin Inc., Mobile, AL 36607, USA ORCID https://orcid.org/0000-0002-7824-2849 E-mail: micky.allen@nibio.no
  • Nilsson, Swedish University of Agricultural Sciences (SLU), Southern Swedish Forest Research Centre, SE-23053 Alnarp, Sweden ORCID https://orcid.org/0000-0002-7624-4031 E-mail: urban.nilsson@slu.se
  • Brunner, Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, NO-1432 Ås, Norway ORCID https://orcid.org/0000-0003-1668-9714 E-mail: andreas.brunner@nmbu.no
  • Huuskonen, Natural Resources Institute Finland (Luke), Natural resources, P.O. Box 2, FI-00790 Helsinki, Finland ORCID https://orcid.org/0000-0001-8630-3982 E-mail: saija.huuskonen@luke.fi
  • Haikarainen, Natural Resources Institute Finland (Luke), Natural resources, P.O. Box 2, FI-00790 Helsinki, Finland ORCID https://orcid.org/0000-0001-8703-3689 E-mail: soili.haikarainen@luke.fi
  • Subramanian, Swedish University of Agricultural Sciences (SLU), Southern Swedish Forest Research Centre, SE-23053 Alnarp, Sweden ORCID https://orcid.org/0000-0003-2777-3241 E-mail: narayanan.subramanian@slu.se
  • Antón-Fernández, Norwegian Institute of Bioeconomy Research (NIBIO), Division of Forest and Forest Products, NO-1431 Ås, Norway ORCID https://orcid.org/0000-0001-5545-3320 E-mail: clara.anton.fernandez@nibio.no
  • Holmström, Swedish University of Agricultural Sciences (SLU), Southern Swedish Forest Research Centre, SE-23053 Alnarp, Sweden ORCID https://orcid.org/0000-0003-2025-1942 E-mail: emma.holmstrom@slu.se
  • Andreassen, Norwegian Institute of Bioeconomy Research (NIBIO), Division of Forest and Forest Products, NO-1431 Ås, Norway ORCID https://orcid.org/0000-0003-4272-3744 E-mail: kjellandreassen@gmail.com
  • Hynynen, Natural Resources Institute Finland (Luke), Natural resources, P.O. Box 2, FI-00790 Helsinki, Finland E-mail: jari.hynynen@luke.fi
article id 10396, category Research article
Agnese Gailīte, Anita Gaile, Dainis E. Ruņģis. (2020). Genetic diversity and structure of wild Vaccinium populations - V. myrtillus, V. vitis-idaea and V. uliginosum in the Baltic States. Silva Fennica vol. 54 no. 5 article id 10396. https://doi.org/10.14214/sf.10396
Keywords: molecular markers; bilberries; bog bilberries; chloroplast SSR; in situ conservation; lingonberries; nuclear SSR
Highlights: Wild Vaccinium species were studied using EST-SSR and chloroplast SSR markers; Populations were moderately genetically differentiated, but without higher order clustering of groups of populations; Genetic diversity of populations growing under different management regimes was similar; Selection of populations for in situ conservation should focus on rare genotypes, more differentiated populations and geographic coverage.
Abstract | Full text in HTML | Full text in PDF | Author Info

Vaccinium myrtillus L., V. vitis-idaea L. and V. uliginosum L. belong to the genus Vaccinium. These wild species are widely distributed and ecologically important within the Baltic countries but they have not been extensively studied using molecular markers. EST-SSR and cpSSR markers were used to investigate the population structure and genetic diversity of these species to obtain information useful for the development of in situ conservation strategies. Wild Vaccinium species populations are moderately genetically differentiated, with some populations more highly differentiated, but without higher order clustering of groups of populations, indicating that there are no dispersal barriers for these species within the Baltic countries. Genetic diversity of populations growing in protected areas, managed forests and intensively utilised public recreational areas is similar. The results from this study can be utilised for the selection of populations for the in situ conservation of the studied Vaccinium species. In addition, complementary ex situ conservation strategies can be used for the preservation of rare varieties (e.g. V. myrtillus var. leucocarpum).

  • Gailīte, Genetic Resource Centre, Latvian State Forest Research Institute “Silava”, 111 Rigas Street, Salaspils, Latvia, LV-2169 E-mail: agnese.gailite@silava.lv (email)
  • Gaile, Genetic Resource Centre, Latvian State Forest Research Institute “Silava”, 111 Rigas Street, Salaspils, Latvia, LV-2169 E-mail: anita.gaile@silava.lv
  • Ruņģis, Genetic Resource Centre, Latvian State Forest Research Institute “Silava”, 111 Rigas Street, Salaspils, Latvia, LV-2169 ORCID https://orcid.org/0000-0001-5173-2912 E-mail: dainis.rungis@silava.lv
article id 10379, category Research article
Juha Laitila, Kari Väätäinen. (2020). Productivity of harvesting and clearing of brushwood alongside forest roads. Silva Fennica vol. 54 no. 5 article id 10379. https://doi.org/10.14214/sf.10379
Keywords: logging; energy wood; time study; harwarder; spiral cutter; whole-trees
Highlights: The results can be used as a basis to determine in what kinds of cases brushwood biomass should be recovered and where it should be left to decay; The average volume of harvested brushwood and forwarding distance are the key elements to harvesting productivity with a harwarder; Stump diameter has a strong impact on clearing productivity of brushwood.
Abstract | Full text in HTML | Full text in PDF | Author Info

Expertise in the cost-efficient utilization and treatment of brushwood on forest roadside sites is limited. In the present study, the productivity of brushwood clearing and harvesting on forest roadside sites was defined by creating time-consumption models or parameters for the aforementioned working methods. Compiled time consumption models and parameters for the brushwood clearing and harvesting can be used as a basis for evaluating alternative management practices and to determine when brushwood biomass should be harvested and when it should be left to decay. The harvesting of brushwood was based on the harwarder system and the clearing of brushwood was done with a spiral cutter, which is a novel accessory for cutting roadside vegetation. Based on the study results, the average volume of harvested brushwood and forwarding distance are the key elements that have an effect on harvesting productivity with harwarders. Correspondingly, stump diameter has a strong impact on the clearing productivity of brushwood. The plot-wise productivity of the spiral cutter in brushwood clearings varied in the range of 0.19–0.61 ha per PMh. An increase in stump diameter slowed down the clearing productivity of the spiral cutter and there was a clear step downward in clearing productivity as the average diameter increased from 30 mm to 40 mm. The machinery under study operated well and there were no interruptions due to machine breakdowns.

  • Laitila, Natural Resources Institute Finland (Luke), Production systems, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: juha.laitila@luke.fi (email)
  • Väätäinen, Natural Resources Institute Finland (Luke), Production systems, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: kari.vaatainen@luke.fi
article id 10369, category Research article
Tiina Laine, Ville Kankaanhuhta, Juho Rantala, Timo Saksa. (2020). Effects of spot mounding and inverting on growth of conifers, exposed mineral soil and natural birch regeneration. Silva Fennica vol. 54 no. 5 article id 10369. https://doi.org/10.14214/sf.10369
Keywords: boreal forest; regeneration; site preparation; mounding; young stand management
Highlights: There were 21% fewer naturally regenerated birches ha–1 in inverted areas (22 951) compared to spot mounded areas (29 086); Spot mounding exposed slightly, but not statistically significantly, larger area of mineral soil than inverting; There was no difference in seedling mortality or growth between the site preparation methods.
Abstract | Full text in HTML | Full text in PDF | Author Info

In Nordic forests, consistent evidence about better seedling survival rate and increased growth due to site preparation have been obtained in numerous studies. Proper site preparation method can reduce costs of the whole regeneration chain through its effects on survival of planted seedlings, abundance of natural regeneration and competition in early stand development. This study compared the natural regeneration of birches (silver birch (Betula pendula Roth) and downy birch (B. pubescens Ehrh.)), amount of exposed mineral soil, and growth of planted seedlings between spot mounding and inverting site preparation methods. Present study was conducted in eight forest stands established in 2012 or 2015. Even though difference was not statistically significant, inverting exposed less mineral soil than spot mounding and thus reduced the natural regeneration of birch seedlings by 6135 seedlings ha–1 compared to spot mounding. However, the variation between regeneration areas was remarkable. There was no difference in seedling mortality or growth between the site preparation methods. In order to achieve high growth of conifers, moderate amount of exposed mineral soil and thus less naturally regenerated birch, inverting should be favored over spot mounding.

  • Laine, Metsä Group, P.O. Box 208, FI-70101 Kuopio, Finland E-mail: tiina.laine@metsagroup.com (email)
  • Kankaanhuhta, Natural Resources Institute Finland (Luke), Natural resources, Juntintie 154, FI-77600 Suonenjoki, Finland E-mail: ville.kankaanhuhta@luke.fi
  • Rantala, Metsä Group, P.O. Box 10, FI-02020 METSÄ, Finland E-mail: juho.rantala@metsagroup.com
  • Saksa, Natural Resources Institute Finland (Luke), Natural resources, Juntintie 154, FI-77600 Suonenjoki, Finland E-mail: timo.saksa@luke.fi
article id 10351, category Research article
Karol Bronisz, Michał Zasada. (2020). Taper models for black locust in west Poland. Silva Fennica vol. 54 no. 5 article id 10351. https://doi.org/10.14214/sf.10351
Keywords: taper; Robinia pseudoacacia; mixed-effects models; section diameter over and under bark; volume prediction
Highlights: Seven taper models with different numbers of estimated parameters were analysed; Section diameter and volume was modelled using fixed and mixed-effects modelling approaches; The variable-form taper model with eight estimated parameters fitted the data the best; The lowest error for volume prediction was achieved for the fixed-effects taper model.
Abstract | Full text in HTML | Full text in PDF | Author Info

The diameter at any point on a stem and tree volume are some of the most important types of information used in forest management planning. One of the methods to predict the diameter at any point on a stem is to develop taper models. Black locust (Robinia pseudoacacia L.) occurs in almost all forests in Poland, with the largest concentration in the western part of the country. Using empirical data obtained from 13 black locust stands (48 felled trees), seven taper models with different numbers of estimated parameters were analysed for section diameters both over and under bark using fixed and mixed-effects modelling approaches. Assuming a lack of additional measurements, the best fitted taper models were used for the prediction of over bark volume using both methods. The predicted volume was compared with the results from different volume equations available for black locust. The variable-form taper model with eight estimated parameters fitted the data the best. The lowest root mean square error for volume prediction was achieved for the elaborated fixed-effects taper model (0.0476), followed by the mixed-effects taper model (0.0489). At the same time, the difference between the volume relative errors achieved based on the taper models does not differ significantly from the results obtained using the volume equations already available for black locust (two of the three analysed).

  • Bronisz, Institute of Forest Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, PL 02-776 Warsaw, Poland E-mail: karol.bronisz@wl.sggw.pl (email)
  • Zasada, Institute of Forest Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, PL 02-776 Warsaw, Poland ORCID https://orcid.org/0000-0002-4881-296X E-mail: Michal.Zasada@wl.sggw.pl
article id 10334, category Research article
Annija Kārkliņa, Guntis Brūmelis, Iluta Dauškane, Didzis Elferts, Lāsma Freimane, Māra Kitenberga, Zane Lībiete, Roberts Matisons, Āris Jansons. (2020). Effect of salvage-logging on post-fire tree establishment and ground cover vegetation in semi-natural hemiboreal forests. Silva Fennica vol. 54 no. 5 article id 10334. https://doi.org/10.14214/sf.10334
Keywords: management; forest fire; natural disturbance; legacies; understory vegetation
Highlights: Effect of salvage logging on post-fire understory vegetation was assessed; Effect of salvage logging differed depending on forest types; In dry-poor stands, Calluna vulgaris was hindering other plant species; In wet stands, logging had positive effect on understory vegetation diversity; Salvage logging enhanced the effect of natural disturbance in dry-rich stands.
Abstract | Full text in HTML | Full text in PDF | Author Info

Fire is a common disturbance in boreal forests causing changes in biological diversity at various spatial scales. In the past 100 years, forest management has limited fire outbreaks, but in the future, the fire-affected forest area is expected to increase in many regions due to climate change. Burned forests are typically salvage-logged, but the effect of this type of management versus natural regeneration on biological diversity is not well understood, particularly the mid-term effect to tree establishment and understory vegetation composition and diversity. Various management methods were used after a large fire in 1992 in a peatland-forest complex and neighbouring managed forests, which created an experimental setup for study of the effect of management after fire in the Sliteres National park, northwestern Latvia. Understory vegetation was described in plots using a design of four forest and three management types: natural regeneration (unmanaged) and managed sites with salvage logging followed by no further human intervention and salvage logging with planting. Post-fire management had different effect in each forest type. Species richness was higher in forest types with salvage logging than in natural regenerated sites on rich wet and rich dry forest types, but not for the poor forest types. Tree regeneration was generally greater in salvage-logged stands, but differed between forest types. Species composition was related to tree regeneration and canopy openness. In contrast to other studies, salvage logging had a positive mid-term effect to ground vegetation diversity and tree establishment in the studied stands, implying potential for concomitant management and conservation of ground cover vegetation in semi-natural stands.

  • Kārkliņa, Latvian State Forest Research Institute “Silava”, 111 Rigas Street, LV-2169, Salaspils, Latvia E-mail: annija.karklina@silava.lv (email)
  • Brūmelis, University of Latvia, Faculty of Biology, Jelgavas street 1, LV-1004, Riga, Latvia E-mail: guntis.brumelis@lu.lv
  • Dauškane, University of Latvia, Faculty of Biology, Jelgavas street 1, LV-1004, Riga, Latvia E-mail: iluta.dauskane@lu.lv
  • Elferts, Latvian State Forest Research Institute “Silava”, 111 Rigas Street, LV-2169, Salaspils, Latvia; University of Latvia, Faculty of Biology, Jelgavas street 1, LV-1004, Riga, Latvia E-mail: didzis.elferts@lu.lv
  • Freimane, Latvian State Forest Research Institute “Silava”, 111 Rigas Street, LV-2169, Salaspils, Latvia E-mail: lasma.freimane@silava.lv
  • Kitenberga, Latvian State Forest Research Institute “Silava”, 111 Rigas Street, LV-2169, Salaspils, Latvia E-mail: mara.kitenberga@silava.lv
  • Lībiete, Latvian State Forest Research Institute “Silava”, 111 Rigas Street, LV-2169, Salaspils, Latvia E-mail: zane.libiete@silava.lv
  • Matisons, Latvian State Forest Research Institute “Silava”, 111 Rigas Street, LV-2169, Salaspils, Latvia E-mail: robism@inbox.lv
  • Jansons, Latvian State Forest Research Institute “Silava”, 111 Rigas Street, LV-2169, Salaspils, Latvia E-mail: aris.jansons@silava.lv
article id 10309, category Research article
Petteri Seppänen, Antti Mäkinen. (2020). Comprehensive yield model for plantation teak in Panama. Silva Fennica vol. 54 no. 5 article id 10309. https://doi.org/10.14214/sf.10309
Keywords: simulation; teak; decision support system; Tectona grandis; Panama; taper curve; volume equation; yield model
Highlights: Tree level teak stem volume models, taper model and three sets of stand level yield models were developed using large empirical datasets; Tree volume models were satisfactorily validated against independent measurement data and other published models; Tree height as input parameter improved the stem volume model marginally; Stand level yield models produced comparable harvest volumes with models published in the literature; Stand level timber product outputs were found like actual harvests with an exception that the models marginally underestimate the share of logs in very large diameter classes.
Abstract | Full text in HTML | Full text in PDF | Author Info

The purpose of this study was to prepare a comprehensive, computerized teak (Tectona grandis L.f) plantation yield model system that can be used to describe the forest dynamics, predict growth and yield and support forest planning and decision-making. Extensive individual tree and permanent sample plot data were used to develop tree-level volume models, taper curve models and stand-level yield models for teak plantations in Panama. Tree volume models were satisfactorily validated against independent measurement data and other published models. Tree height as input parameter improved the stem volume model marginally. Stand level yield models produced comparable harvest volumes with models published in the literature. Stand level volume product outputs were found like actual harvests with an exception that the models marginally underestimate the share of logs in very large diameter classes. The kind of comprehensive model developed in this study and implemented in an easy to use software package provides a very powerful decision support tool. Optimal forest management regimes can be found by simulating different planting densities, thinning regimes and final harvest ages. Forest practitioners can apply growth and yield models in the appropriate stand level inventory data and perform long term harvest scheduling at property level or even at an entire timberland portfolio level. Harvest schedules can be optimized using the applicable financial parameters (silviculture costs, harvesting costs, wood prices and discount rates) and constraints (market size and operational capacity).

  • Seppänen, Verdas Oy, Kihlinkuja 7, FI-50600 Mikkeli, Finland E-mail: petteri@verdas.fi (email)
  • Mäkinen,  Simosol Oy. Hämeenkatu 10, FI-11100 Riihimäki, Finland E-mail: antti.makinen@simosol.fi
article id 10291, category Research article
Sakari Tuominen, Andras Balazs, Annika Kangas. (2020). Comparison of photogrammetric canopy models from archived and made-to-order aerial imagery in forest inventory. Silva Fennica vol. 54 no. 5 article id 10291. https://doi.org/10.14214/sf.10291
Keywords: distribution; prediction; forest resources; mapping; aerial imaging; digital stereo-photogrammetry
Highlights: Two photogrammetric canopy models were tested in forest inventory: one based on archived standard aerial imagery acquired for ortho-mosaic production and another based on stereo-photogrammetrically oriented aerial imaging adjusted for stereo-photogrammetric canopy modelling; Both data sets were tested in the estimation of forest variables; Despite the differences in imaging parameters, there was little difference in their performance in predicting the forest inventory variables.
Abstract | Full text in HTML | Full text in PDF | Author Info

In remote sensing-based forest inventories 3D point cloud data, such as acquired from airborne laser scanning, are well suited for estimating the volume of growing stock and stand height, but tree species recognition often requires additional optical imagery. A combination of 3D data and optical imagery can be acquired based on aerial imaging only, by using stereo photogrammetric 3D canopy modeling. The use of aerial imagery is well suited for large-area forest inventories, due to low costs, good area coverage and temporally rapid cycle of data acquisition. Stereo-photogrammetric canopy modeling can also be applied to previously acquired imagery, such as for aerial ortho-mosaic production, assuming that the imagery has sufficient stereo overlap. In this study we compared two stereo-photogrammetric canopy models combined with contemporary satellite imagery in forest inventory. One canopy model was based on standard archived imagery acquired primarily for ortho-mosaic production, and another was based on aerial imagery whose acquisition parameters were better oriented for stereo-photogrammetric canopy modeling, including higher imaging resolution and greater stereo-coverage. Aerial and satellite data were tested in the estimation of growing stock volume, volumes of main tree species, basal area and diameter and height. Despite the better quality of the latter canopy model, the difference of the accuracy of the forest estimates based on the two different data sets was relatively small for most variables (differences in RMSEs were 0–20%, depending on variable). However, the estimates based on stereo-photogrammetrically oriented aerial data retained better the original variation of the forest variables present in the study area.

  • Tuominen, Natural Resources Institute Finland (Luke), Bioeconomy and Environment, P.O. Box 2, FI-00791 Helsinki, Finland E-mail: sakari.tuominen@luke.fi (email)
  • Balazs, Natural Resources Institute Finland (Luke), Bioeconomy and Environment, P.O. Box 2, FI-00791 Helsinki, Finland E-mail: andras.balazs@luke.fi
  • Kangas, Natural Resources Institute Finland (Luke), Bioeconomy and Environment, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: annika.kangas@luke.fi
article id 10272, category Research article
Ana de Lera Garrido, Terje Gobakken, Hans Ole Ørka, Erik Næsset, Ole M. Bollandsås. (2020). Reuse of field data in ALS-assisted forest inventory. Silva Fennica vol. 54 no. 5 article id 10272. https://doi.org/10.14214/sf.10272
Keywords: airborne laser scanning; data reuse; temporal model transferability
Highlights: Six biophysical forest attributes were estimated for small stands without using up-to-date field data; The approaches included reused model relationships and forecasted field data; The accuracy of height estimates was comparable with the accuracy of an ordinary forest inventory with up-to-date field- and ALS data; Both approaches tended to produce estimates systematically different from the ground reference.
Abstract | Full text in HTML | Full text in PDF | Author Info

Forest inventories assisted by wall-to-wall airborne laser scanning (ALS), have become common practice in many countries. One major cost component in these inventories is the measurement of field sample plots used for constructing models relating biophysical forest attributes to metrics derived from ALS data. In areas where ALS-assisted forest inventories are planned, and in which the previous inventories were performed with the same method, reusing previously acquired field data can potentially reduce costs, either by (1) temporally transferring previously constructed models or (2) projecting field reference data using growth models that can serve as field reference data for model construction with up-to-date ALS data. In this study, we analyzed these two approaches of reusing field data acquired 15 years prior to the current ALS acquisition to estimate six up-to-date forest attributes (dominant tree height, mean tree height, stem number, stand basal area, volume, and aboveground biomass). Both approaches were evaluated within small stands with sizes of approximately 0.37 ha, assessing differences between estimates and ground reference values. The estimates were also compared to results from an up-to-date forest inventory relying on concurrent field- and ALS data. The results showed that even though the reuse of historical information has some potential and could be beneficial for forest inventories, systematic errors may appear prominent and need to be overcome to use it operationally. Our study showed systematic trends towards the overestimation of lower-range ground references and underestimation of the upper-range ground references.

  • de Lera Garrido, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: ana.maria.lera.garrido@nmbu.no (email)
  • Gobakken, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: terje.gobakken@nmbu.no
  • Ørka, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: hans-ole.orka@nmbu.no
  • Næsset, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: erik.naesset@nmbu.no
  • Bollandsås, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: ole.martin.bollandsas@nmbu.no

Category : Review article

article id 10381, category Review article
Carl F. Salk. (2020). Interpreting common garden studies to understand cueing mechanisms of spring leafing phenology in temperate and boreal tree species. Silva Fennica vol. 54 no. 5 article id 10381. https://doi.org/10.14214/sf.10381
Keywords: photoperiod; bud break; budburst; chilling; elevation gradients; latitudinal gradients; leaf flush; reciprocal transplant experiments; xylem anatomy
Abstract | Full text in HTML | Full text in PDF | Author Info

Trees are particularly susceptible to climate change due to their long lives and slow dispersal. However, trees can adjust the timing of their growing season in response to weather conditions without evolutionary change or long-distance migration. This makes understanding phenological cueing mechanisms a critical task to forecast climate change impacts on forests. Because of slow data accumulation, unconventional and repurposed information is valuable in the study of phenology. Here, I develop and use a framework to interpret what phenological patterns among provenances of a species in a common garden reveal about their leafing cues, and potential climate change responses. Species whose high elevation/latitude provenances leaf first likely have little chilling requirement, or for latitude gradients only, a critical photoperiod cue met relatively early in the season. Species with low latitude/elevation origins leafing first have stronger controls against premature leafing; I argue that these species are likely less phenologically flexible in responding to climate change. Among published studies, the low to high order is predominant among frost-sensitive ring-porous species. Narrow-xylemed species show nearly all possible patterns, sometimes with strong contrasts even within genera for both conifers and angiosperms. Some also show complex patterns, indicating multiple mechanisms at work, and a few are largely undifferentiated across broad latitude gradients, suggesting phenotypic plasticity to a warmer climate. These results provide valuable evidence on which temperate and boreal tree species are most likely to adjust in place to climate change, and provide a framework for interpreting historic or newly-planted common garden studies of phenology.

  • Salk, Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, P.O. Box 49, SE- 230 53 Alnarp, Sweden; Faculty of International Studies, Utsunomiya University, 350 Minemachi, Utsunomiya-shi, Tochigi 321-8505 Japan; Institute for Globally Distributed Open Research and Education (IGDORE) E-mail: carl.salk@slu.se (email)

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles