The effect of photon flux density on bud dormancy release in two-year-old seedlings of Norway spruce (Picea abies (L.) H. Karst.) was examined. The seedlings were first chilled for 0–21 weeks under natural conditions and then forced in a warm greenhouse either in low (15 μEm-2s-1) or in high (300 μEm-2s-1) photon flux density. Occurrence of bud burst was observed in the forcing conditions, and the observations were used for estimating the cumulative frequency distribution of the chilling requirement for growth competence. The estimated distribution had greater variance in the low photon flux density than in the high photon flux density forcing. This finding suggests that unnaturally low photon flux densities during forcing may yield overestimates of the genetic within-population variation in the chilling requirement for growth competence.
The PDF includes an abstract in Finnish.
The relationships between bud dormancy and frost hardiness were examined using two-year-old Pinus sylvestris L. seedlings. The chilling temperatures used were +4 and -2°C. To examine the dormancy release of the seedlings, a forcing technique was used. Frost hardiness was determined by artificial freezing treatments and measurements of electrical impedance. At the start of the experiment, the frost hardiness of the seedlings was about -25°C. After the rest break, the seedlings kept at +4°C dehardened until after eight weeks their frost hardiness reached -5°C. At the lower chilling temperature (-2°C) the frost hardiness remained at the original level. When moved from +4 to -2°C, seedlings were able to reharden only after the time required for bud burst in the forcing conditions had reached the minimum.
The PDF includes an abstract in Finnish
Models concerning the effects of temperature on dormancy release in woody plants were tested using two-year old seedlings of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.). Chilling experiments suggest that the rest period has a distinct end point. Before the attainment of this end point high temperatures do not promote bud development towards dormancy release, and after it further chilling does not affect the subsequent bud development. A new hypothesis of dormancy release is suggested on the basis of a comparison between present and earlier findings. No difference in the proportion of growth commencing seedlings were detected between the forcing temperatures of 17°C and 22°C. The rest break of 50% of Norway spruce and Scots pine seedlings required six and eight weeks of chilling, respectively. Great variation in the chilling requirement was found, especially for Scots pine.
The PDF includes an abstract in Finnish.
Logical structure of three simulation models and one conceptual model concerning effects of temperature on dormancy release in woody plants was examined. The three basic types of simulation models differed in their underlying assumptions. Contrasting implications of the models were inferred by deduction. With the aid of these implications, the model types can be tested using experiments with continuous and interrupted chilling. Similarly, implications of the conceptual model of rest phases were inferred, by which the model can be tested using experiments with continuous chilling and forcing in multiple temperatures. The possibilities to synthetize the conceptual model with any of the three simulation model types, as well as the biological interpretation of the model variables, were discussed.
The PDF includes an abstract in Finnish.
Germination tests in varying photoperiod- and temperature-regimes showed that for early autumn collections, germination of Scots pine (Pinus sylvestris L.) seeds is delayed, especially at low incubation temperature (+10°C) and in darkness. The presence of light during germination (8- or 24-hour photoperiod) or high incubation temperature (+20°C) enhanced germination. As autumn proceeded, a greater proportion of seed were able of germinate in darkness and also in low temperature regime. This result was consistent in both populations studied – in seeds from natural stand (Hyytiälä, Southern Finland) and in seeds from the Hyytiälä clone archive trees, growing in the same site.
An attempt was made to relate the development of germinability during autumn to previously accumulated chilling unit (optimum temperature +3.5°C) sum. Germination percent variation in subsequent cone-collection could not, however, be explained with accumulated chilling.
The PDF includes a summary in Finnish.
Trees are particularly susceptible to climate change due to their long lives and slow dispersal. However, trees can adjust the timing of their growing season in response to weather conditions without evolutionary change or long-distance migration. This makes understanding phenological cueing mechanisms a critical task to forecast climate change impacts on forests. Because of slow data accumulation, unconventional and repurposed information is valuable in the study of phenology. Here, I develop and use a framework to interpret what phenological patterns among provenances of a species in a common garden reveal about their leafing cues, and potential climate change responses. Species whose high elevation/latitude provenances leaf first likely have little chilling requirement, or for latitude gradients only, a critical photoperiod cue met relatively early in the season. Species with low latitude/elevation origins leafing first have stronger controls against premature leafing; I argue that these species are likely less phenologically flexible in responding to climate change. Among published studies, the low to high order is predominant among frost-sensitive ring-porous species. Narrow-xylemed species show nearly all possible patterns, sometimes with strong contrasts even within genera for both conifers and angiosperms. Some also show complex patterns, indicating multiple mechanisms at work, and a few are largely undifferentiated across broad latitude gradients, suggesting phenotypic plasticity to a warmer climate. These results provide valuable evidence on which temperate and boreal tree species are most likely to adjust in place to climate change, and provide a framework for interpreting historic or newly-planted common garden studies of phenology.