Models concerning the effects of temperature on dormancy release in woody plants were tested using two-year old seedlings of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.). Chilling experiments suggest that the rest period has a distinct end point. Before the attainment of this end point high temperatures do not promote bud development towards dormancy release, and after it further chilling does not affect the subsequent bud development. A new hypothesis of dormancy release is suggested on the basis of a comparison between present and earlier findings. No difference in the proportion of growth commencing seedlings were detected between the forcing temperatures of 17°C and 22°C. The rest break of 50% of Norway spruce and Scots pine seedlings required six and eight weeks of chilling, respectively. Great variation in the chilling requirement was found, especially for Scots pine.
The PDF includes an abstract in Finnish.
The effect of cutting the root connection by detaching the shoot from the root system on dormancy release and vegetative bud burst was examined in 2-year-old seedlings of Norway spruce (Picea abies [L.] Karst.). Seedlings were transferred at 1–4 week intervals between October and January from outdoor conditions to experimental forcing in a heated greenhouse. Before forcing, half of the seedlings were cut above ground line, and the detached shoots were forced with their cut ends placed in water. The intact seedlings were forced with their root system remaining intact in the pots. Vegetative bud burst was observed visually. Cutting the root connection slightly increased days to bud burst in the forcing conditions, however, no consistent effect on bud burst percentage was found. Our preliminary seedling data suggest that using detached tree material in dormancy release experiments may have a small effect on bud burst date but it will evidently not lead to drastically erroneous conclusions. Further studies, using different seed lots, are needed to assess the effect of detaching on the dormancy release and bud burst, especially in adult trees.