Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Silva Fennica vol. 51 no. 5 | 2017

Category : Research article

article id 7783, category Research article
Markku T. Lehtinen, Pertti Pulkkinen. (2017). Effects of Scots pine paternal genotypes of two contiguous seed orchards on the budset and frost hardening of first-year progeny. Silva Fennica vol. 51 no. 5 article id 7783. https://doi.org/10.14214/sf.7783
Keywords: Pinus sylvestris; provenance; conifer; environmental influence; pollen; genotype effect
Highlights: This environmentally controlled study on Scots pine demonstrated the effect of the paternal genotype on the budset and frost hardening of the progeny; With the applied study design, no significant indication of an environmental influence on the effect of the Scots pine paternal genotype was obtained.
Abstract | Full text in HTML | Full text in PDF | Author Info

In Scots pine (Pinus sylvestris L.), it has been shown that the parental conditions have a role in the phenological variation among first-year seedlings. For this reason, it is argued that they should be comprehensively controlled before estimating the parental genotype effects. This controlled-cross study examined the effects of a set of fathers of Scots pines on the timing of budset and autumn frost hardening of first-year seedlings. The paternal genotypes had either a northern or southern provenance, but had spent a period of over 25 years as grafts in a shared climatic environment in two closely located southern orchards. Pollen applied in the crosses was collected from these orchards in one year and all the maternal genotypes were pollinated in only one seed orchard. The results of freeze tests and budset observations of the consequent progeny were analysed and additionally compared with results obtained using seedlings from seed lots of natural forests in order to estimate the ability of northern paternal genotypes to maintain a northern effect under southern conditions. This environmentally controlled study demonstrated a significant effect of the paternal genotype on the budset and autumn frost hardening of first-year seedling of Scots pine. With the applied study design, no significant indication of an environmental influence on the effect of the paternal genotype was obtained. The accuracy of the observations is discussed. It is concluded that the results suggest a minor role of mutability in the effects of Scots pine paternal genotypes.

  • Lehtinen, University of Helsinki, Department of Agricultural Sciences, Latokartanonkaari 5 and 7, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: markku.t.lehtinen@helsinki.fi (email)
  • Pulkkinen, Natural Resources Institute Finland (Luke), Green Technology, Haapastensyrjäntie 34, FI-12600 Läyliäinen, Finland E-mail: pertti.pulkkinen@luke.fi
article id 7759, category Research article
Jaana Luoranen, Sirkka Sutinen. (2017). Reduced height of short day induced bud scale complex may partly explain early bud burst in Norway spruce seedlings. Silva Fennica vol. 51 no. 5 article id 7759. https://doi.org/10.14214/sf.7759
Keywords: Picea abies; elongation; bud scale complex; primordia; shape
Highlights: Short day treatment used in tree seedling nurseries affects the structure of apical buds; Changes in bud structure may partly explain early bud burst and may be a reason for unburst buds of short day treated seedlings.
Abstract | Full text in HTML | Full text in PDF | Author Info

Short day (SD) treatment is used as a dormancy induction in forest tree seedling nurseries in the boreal forest zone. However, SD treatment has caused early bud burst in the following spring, which may expose the seedlings to spring frosts. Because the mechanisms affecting earlier bud burst in SD treated seedlings are not fully understood yet, here we have studied the effect of SD treatment on the structure of buds in Norway spruce [Picea abies (L.) Karst.] seedlings. Seedlings were exposed to SD treatments or natural (CTRL) light and photoperiod in July in a nursery in Central Finland. The experiments included two lots of seedlings over two summers and the analyses were done under a stereo microscope. SD treatment advanced initiation of bud scales and formation of needle primordia, and thus the formation period was shorter in CTRL seedlings. In mature buds, no differences in primordial shoots were found between the treatments, whereas notable differences were found in bud scales. The SD buds had fewer and shorter bud scales than the CTRL buds. This led to significantly shorter bud scale complex and, consequently, to shorter buds in SD than in CTRL seedlings. Buds and needles matured earlier in SD treated seedlings. In the following spring, the primordial shoots started to elongate in both treatments around mid-May, when the SD buds started to break down, whereas CTRL buds started to break down in late May. The fewer number and shorter height of protective bud scales may expose buds to harsh winter temperatures and early loss of scales may predispose the SD buds to spring frosts.

  • Luoranen, Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Juntintie 154, FI-77600 Suonenjoki, Finland E-mail: jaana.luoranen@luke.fi (email)
  • Sutinen, E-mail: sirusuti@gmail.com
article id 7751, category Research article
Göran Nordlander, Euan G. Mason, Karin Hjelm, Henrik Nordenhem, Claes Hellqvist. (2017). Influence of climate and forest management on damage risk by the pine weevil Hylobius abietis in northern Sweden. Silva Fennica vol. 51 no. 5 article id 7751. https://doi.org/10.14214/sf.7751
Keywords: temperature sum; reforestation; soil scarification; clear-cut age; conifer seedling; damage prediction; warmer climate
Highlights: Analysis of survey data from 292 reforestation areas in northern Sweden show that the probability of pine weevil damage can be predicted with a standard error of 0.12; Three variables are important in the optimal model: proportion of seedlings in mineral soil, age of clear-cut, and temperature sum; Temperature sum in the model can be adjusted to reflect future climate scenarios.
Abstract | Full text in HTML | Full text in PDF | Author Info

The pine weevil Hylobius abietis L. is an economically important pest insect that kills high proportions of conifer seedlings in reforestation areas. It is present in conifer forests all over Europe but weevil abundance and risk for damage varies considerably between areas. This study aimed to obtain a useful model for predicting damage risks by analyzing survey data from 292 regular forest plantations in northern Sweden. A model of pine weevil attack was constructed using various site characteristics, including both climatic factors and factors related to forest management activities. The optimal model was rather imprecise but showed that the risk of pine weevil attack can be predicted approximatively with three principal variables: 1) the proportion of seedlings expected to be planted in mineral soil rather than soil covered with duff and debris, 2) age of clear-cut at the time of planting, and 3) calculated temperature sum at the location. The model was constructed using long-run average temperature sums for epoch 2010, and so effects of climate change can be inferred from the model by adjustment to future epochs. Increased damage risks with a warmer climate are strongly indicated by the model. Effects of a warmer climate on the geographical distribution and abundance of the pine weevil are also discussed. The new tool to better estimate the risk of damage should provide a basis for foresters in their choice of countermeasures against pine weevil damage in northern Europe.

  • Nordlander, Swedish University of Agricultural Sciences (SLU), Department of Ecology, P.O. Box 7044, SE-750 07 Uppsala, Sweden E-mail: Goran.Nordlander@slu.se
  • Mason, University of Canterbury, School of Forestry, Private Bag 4800, Christchurch 8140, New Zealand; Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, SE-230 53 Alnarp, Sweden ORCID http://orcid.org/0000-0001-9024-9106 E-mail: euan.mason@canterbury.ac.nz (email)
  • Hjelm, Skogforsk, The Forest Research Institute of Sweden, Ekebo 2250, SE-268 90 Svalöv, Sweden; Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, SE-230 53 Alnarp, Sweden E-mail: karin.hjelm@skogforsk.se
  • Nordenhem, Swedish University of Agricultural Sciences (SLU), Department of Ecology, P.O. Box 7044, SE-750 07 Uppsala, Sweden E-mail: h.nordenhem@telia.com
  • Hellqvist, Swedish University of Agricultural Sciences (SLU), Department of Ecology, P.O. Box 7044, SE-750 07 Uppsala, Sweden E-mail: Claes.Hellqvist@slu.se
article id 7748, category Research article
Dominik Bayer, Hans Pretzsch. (2017). Reactions to gap emergence: Norway spruce increases growth while European beech features horizontal space occupation – evidence by repeated 3D TLS measurements. Silva Fennica vol. 51 no. 5 article id 7748. https://doi.org/10.14214/sf.7748
Keywords: Picea abies; gap dynamics; Fagus sylvatica; crown expansion; crown allometry; TLS; growing area competition; growing space efficiency
Highlights: Analysis of the closure dynamics of a Norway spruce, a European beech and a mixed forest gap by repeated TLS measurements; Norway spruce allocated additional resources predominantly into DBH growth and displayed stronger resilience against mechanical crown damage; European beech allocated resources towards space occupation and displayed higher crown plasticity; Species mixture had no significant effect.
Abstract | Full text in HTML | Full text in PDF | Author Info

The reach of different tree species’ crowns and the velocity of gap closure during the occupation of canopy gaps resulting from mortality and thinning during stand development determine species-specific competition and productivity within forest stands. However, classical dendrometric methods are rather inaccurate or even incapable of time- and cost-effectively measuring 3D tree structure, crown dynamics and space occupation non-destructively. Therefore, we applied terrestrial laser scanning (TLS) in order to measure the structural dynamics at tree and stand level from gap cutting in 2006 until 2012 in pure and mixed stands of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.). In conclusion, our results suggest that Norway spruce invests newly available above-ground resources primarily into DBH as well as biomass growth and indicate a stronger resilience against loss of crown mass induced by mechanical damage. European beech showed a vastly different reaction, investing gains from additional above-ground resources primarily into faster occupation of canopy space. Whether our sample trees were located in pure or mixed groups around the gaps had no significant impact on their behavior during the years after gap cutting.

  • Bayer, Address Technical University of Munich (TUM), Chair for Forest Growth and Yield Science, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany ORCID http://orcid.org/0000-0002-2084-3019 E-mail: dominik.bayer@lrz.tu-muenchen.de (email)
  • Pretzsch, Address Technical University of Munich (TUM), Chair for Forest Growth and Yield Science, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany E-mail: hans.pretzsch@lrz.tu-muenchen.de
article id 7746, category Research article
Jānis Donis, Māra Kitenberga, Guntars Šņepsts, Roberts Matisons, Juris Zariņš, Āris Jansons. (2017). The forest fire regime in Latvia during 1922–2014. Silva Fennica vol. 51 no. 5 article id 7746. https://doi.org/10.14214/sf.7746
Keywords: forest disturbance; fire regime; hemiboreal zone; spatial analysis
Highlights: Climate effects and human influence on forest fire activity in Latvia was assessed using time-series analysis; Drought conditions during summer season had the strongest effect on fire activity of tested climatic variables; Negative trends and spatial distribution pattern of fire activity suggests of prevailing human influence on forest fire regime over the 20th century.
Abstract | Full text in HTML | Full text in PDF | Author Info

Fire as disturbance of forests has an important ecological and economical role in boreal and hemiboreal forests. The occurrence of forest fires is both climatically and anthropogenically determined and shifts in fire regimes are expected due to climate change. Although fire histories have been well documented in boreal regions, there is still insufficient information about fire occurrence in the Baltic States. In this study, spatio-temporal patterns and climatic drivers of forest fires were assessed by means of spatial and time-series analysis. The efficiency of Canadian Fire Weather (FWI) indices as indicators for fire activity was tested. The study was based on data from the literature, archives, and the Latvian State Forest service database. During the period 1922–2014, the occurrence and area affected by forest fires has decreased although the total area of forest land has nearly doubled, suggesting improvement of the fire suppression system as well as changes in socioeconomic situation. The geographical distribution of forest fires revealed two pronounced clusters near the largest cities of Riga and Daugavpils, suggesting dominance of human causes of ignitions. The occurrence of fires was mainly influenced by drought. FWI appeared to be efficient in predicting the fire occurrence: 23–34% of fires occurred on days with a high or extremely high fire danger class, which overall had a relative occurrence of only 4.3–4.6%. During the 20th century, the peak of fire activity shifted from May to April, probably due to global warming and socioeconomic reasons. The results of this study are relevant for forest hazard mitigation and development of fire activity prediction system in Latvia.

  • Donis, LSFRI “Silava”, Rigas str. 111, Salaspils, Latvia, LV2169 E-mail: janis.donis@silava.lv
  • Kitenberga, LSFRI “Silava”, Rigas str. 111, Salaspils, Latvia, LV2169 E-mail: mara.kitenberga@gmail.com (email)
  • Šņepsts, LSFRI “Silava”, Rigas str. 111, Salaspils, Latvia, LV2169 E-mail: guntars.snepsts@silava.lv
  • Matisons, LSFRI “Silava”, Rigas str. 111, Salaspils, Latvia, LV2169 E-mail: robism@inbox.lv
  • Zariņš, LSFRI “Silava”, Rigas str. 111, Salaspils, Latvia, LV2169 E-mail: juris.zarins@silava.lv
  • Jansons, LSFRI “Silava”, Rigas str. 111, Salaspils, Latvia, LV2169 E-mail: aris.jansons@silava.lv
article id 7723, category Research article
Mihails Čugunovs, Eeva-Stiina Tuittila, Ida Sara-Aho, Laura Pekkola, Jari Kouki. (2017). Recovery of boreal forest soil and tree stand characteristics a century after intensive slash-and-burn cultivation. Silva Fennica vol. 51 no. 5 article id 7723. https://doi.org/10.14214/sf.7723
Keywords: restoration; fire disturbance; historical land-use; rewildening
Highlights: Soil organic matter stocks have still not fully recovered after a century of stand succession and passive recovery after slash-and-burn period; Historical slash-and-burn stands feature higher live birch and standing dead wood volume than controls; If passive rewildening is used, Fennoscandian boreal forests need more than a century to regain naturalness.
Abstract | Full text in HTML | Full text in PDF | Author Info

Passive rewildening of forest ecosystems is commonly used for rehabilitating degraded habitats closer to their natural origin in addition to costly active restoration measures. However, it is not clear if passive processes are effective and how long the recovery of main ecosystem properties takes. We investigate the recovery of forest soil and tree stand characteristics a century after cessation of slash-and-burn cultivation, a major historical intensive disturbance regime that was applied widely in boreal zone of Finland until late 1800s. We systematically sampled soil and tree stand parameters within former slash-and-burn and nearby control areas. Humus layer thickness and soil organic matter (SOM) stocks were still lower in the historical slash-and-burn than in control areas. Slash-and-burn areas also had a larger volume of live birch trees and a higher standing dead wood volume than control areas. Accordingly, organic matter (humus layer thickness and SOM stocks) correlated negatively with birch standing live tree volume. Combined OM stock in humus and uppermost 10 cm mineral soil layer was positively correlated with lying dead wood volume. Overall, we observed clear recovery of several natural properties but we also found that a century after cessation of frequent anthropogenic burnings, clear legacies of disturbance in the above- and below-ground parts of boreal ecosystem were evident. Our results indicate that if only passive rewildening is applied as a restoration measure, the full recovery of boreal forest is slow and the effects of historical land-use may persist for over hundred years in soil and tree properties.

  • Čugunovs, University of Eastern Finland, School of Forest Sciences, Yliopistokatu 7, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: mihails.cugunovs@uef.fi (email)
  • Tuittila, University of Eastern Finland, School of Forest Sciences, Yliopistokatu 7, P.O. Box 111, FI-80101 Joensuu, Finland ORCID http://orcid.org/0000-0001-8861-3167 E-mail: eeva-stiina.tuittila@uef.fi
  • Sara-Aho, University of Eastern Finland, School of Forest Sciences, Yliopistokatu 7, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: ida.sara-aho@mhy.fi
  • Pekkola, University of Eastern Finland, School of Forest Sciences, Yliopistokatu 7, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: laura.pekkola@gmail.com
  • Kouki, University of Eastern Finland, School of Forest Sciences, Yliopistokatu 7, P.O. Box 111, FI-80101 Joensuu, Finland ORCID http://orcid.org/0000-0003-2624-8592 E-mail: jari.kouki@uef.fi
article id 7721, category Research article
Sakari Tuominen, Andras Balazs, Eija Honkavaara, Ilkka Pölönen, Heikki Saari, Teemu Hakala, Niko Viljanen. (2017). Hyperspectral UAV-imagery and photogrammetric canopy height model in estimating forest stand variables. Silva Fennica vol. 51 no. 5 article id 7721. https://doi.org/10.14214/sf.7721
Keywords: forest inventory; digital photogrammetry; aerial imagery; hyperspectral imaging; radiometric calibration; UAVs; stereo-photogrammetric canopy modelling
Highlights: Hyperspectral imagery and photogrammetric 3D point cloud based on RGB imagery were acquired under weather conditions changing from cloudy to sunny; Calibration of hyperspectral imagery was required for compensating the effect of varying weather conditions; The combination of hyperspectral imagery and photogrammetric point cloud data resulted in accurate forest estimates, especially for volumes per tree species.
Abstract | Full text in HTML | Full text in PDF | Author Info

Remote sensing using unmanned aerial vehicle (UAV) -borne sensors is currently a highly interesting approach for the estimation of forest characteristics. 3D remote sensing data from airborne laser scanning or digital stereo photogrammetry enable highly accurate estimation of forest variables related to the volume of growing stock and dimension of the trees, whereas recognition of tree species dominance and proportion of different tree species has been a major complication in remote sensing-based estimation of stand variables. In this study the use of UAV-borne hyperspectral imagery was examined in combination with a high-resolution photogrammetric canopy height model in estimating forest variables of 298 sample plots. Data were captured from eleven separate test sites under weather conditions varying from sunny to cloudy and partially cloudy. Both calibrated hyperspectral reflectance images and uncalibrated imagery were tested in combination with a canopy height model based on RGB camera imagery using the k-nearest neighbour estimation method. The results indicate that this data combination allows accurate estimation of stand volume, mean height and diameter: the best relative RMSE values for those variables were 22.7%, 7.4% and 14.7%, respectively. In estimating volume and dimension-related variables, the use of a calibrated image mosaic did not bring significant improvement in the results. In estimating the volumes of individual tree species, the use of calibrated hyperspectral imagery generally brought marked improvement in the estimation accuracy; the best relative RMSE values for the volumes for pine, spruce, larch and broadleaved trees were 34.5%, 57.2%, 45.7% and 42.0%, respectively.

  • Tuominen, Natural Resources Institute Finland (Luke), Economics and society, P.O. Box 2, FI-00791 Helsinki, Finland ORCID http://orcid.org/0000-0001-5429-3433 E-mail: sakari.tuominen@luke.fi (email)
  • Balazs, Natural Resources Institute Finland (Luke), Economics and society, P.O. Box 2, FI-00791 Helsinki, Finland E-mail: andras.balazs@luke.fi
  • Honkavaara, Finnish Geospatial Research Institute, National Land Survey of Finland, Geodeetinrinne 2, FI-02430 Masala, Finland E-mail: eija.honkavaara@nls.fi
  • Pölönen, University of Jyväskylä, Faculty of Information Technology, P.O. Box 35, FI-40014 Jyväskylä, Finland E-mail: ilkka.polonen@jyu.fi
  • Saari, VTT Microelectronics, P.O. Box 1000, FI-02044 VTT, Finland E-mail: heikki.saari@vtt.fi
  • Hakala, Finnish Geospatial Research Institute, National Land Survey of Finland, Geodeetinrinne 2, FI-02430 Masala, Finland E-mail: teemu.hakala@nls.fi
  • Viljanen, Finnish Geospatial Research Institute, National Land Survey of Finland, Geodeetinrinne 2, FI-02430 Masala, Finland E-mail: niko.viljanen@nls.fi
article id 7693, category Research article
Chunyu Zhu, Jiaojun Zhu, Xiao Zheng, Deliang Lu, Xiufen Li. (2017). Comparison of gap formation and distribution pattern induced by wind/snowstorm and flood in a temperate secondary forest ecosystem, Northeast China. Silva Fennica vol. 51 no. 5 article id 7693. https://doi.org/10.14214/sf.7693
Keywords: secondary forests; canopy opening; windstorm; flood; large scale
Highlights: The canopy gaps induced by wind/snowstorm were aggregated in steep slope and high altitude areas, while the gaps formed by flood were gathered in steep slope and low altitude areas; The wind/snowstorm mainly driven the formation of medium gaps, while the flood mainly promoted the percentage of small gaps and vacant lands.
Abstract | Full text in HTML | Full text in PDF | Author Info

Canopy gap is the driving force of forest succession. Due to the uncontrollability, however, the influences of natural disturbances on gap formation and gap distribution pattern have been rarely understood in temperate secondary forest ecosystems. We monitored the gap formation and gap distribution pattern using high-resolution remote sensing images before and after two disturbances (wind/snowstorm in 2003 and flood in 2013). The results showed that after wind/snowstorm, the gap nearest neighbor index (GNNI) decreased, the vacant land area did not obviously change while the gap fraction and gaps density (especially medium size) increased. After the flood, GNNI decreased, the number of small gaps increased but larger gaps were in many cases extended to vacant land areas leading to a smaller total number of medium and large gaps but considerable increase in vacant land area. We also found that the gap densities increased with slope and altitude for wind/snowstorm-formed gaps, but they increased with increasing slope and decreasing altitude for flood-formed gaps. These results indicated that gaps were aggregated in steep slope and high altitude areas after wind/snowstorm, but in steep slope and low altitude areas after the flood. Medium gaps were mainly created by the wind/snowstorm due to the individual-level death of dominant tree with the continuous fall of surrounding trees. While, vacant lands were obviously created during the flood because of integral sweeping. Besides, smaller trees were easily damaged by runoff of flood, which induced small gaps. In summary, forest managers may pay more attention to use gaps to accelerate forest succession after wind/snowstorms and to restore vegetation in vacant lands after floods.

  • Zhu, E-mail: Chunyuzhu123@126.com
  • Zhu, E-mail: jiaojunzhu@iae.ac.cn (email)
  • Zheng, E-mail: xiaozheng@iae.ac.cn
  • Lu, E-mail: delianglu14@hotmail.com
  • Li, E-mail: delianglu14@hotmail.com
article id 2018, category Research article
Sima Mohtashami, Lars Eliasson, Gunnar Jansson, Johan Sonesson. (2017). Influence of soil type, cartographic depth-to-water, road reinforcement and traffic intensity on rut formation in logging operations: a survey study in Sweden. Silva Fennica vol. 51 no. 5 article id 2018. https://doi.org/10.14214/sf.2018
Keywords: soil disturbance; forestry; forwarder; decision support tool
Highlights: Soil type and traffic intensity had significant effects on rut formation; Further studies are required to identify all factors affecting rut formation, especially on soils with medium bearing capacity; The cartographic depth-to-water index (DTW) alone did not predict rut formation, but used in combination with other information, e.g. soil type, could be an interesting tool for delineating soil areas that are potentially vulnerable to rut formation in logging operations.
Abstract | Full text in HTML | Full text in PDF | Author Info

Rut formation caused by logging operations has been recognised as a challenge for Swedish forestry. Frequent traffic with heavy machines on extraction roads, together with a warmer climate, is one of the factors that increases the risk of rut formation in forests. One possible way to control this impact of logging operations is to design and apply decision support tools that enable operators to take sensitive areas into account when planning extraction roads. In this study, 16 different logging sites in south-eastern Sweden were surveyed after clear-cut. Information was collected about extraction roads (i.e. traffic intensity, whether the roads had been reinforced with slash) and ruts. Digital maps such as cartographic depth-to-water (DTW) index and soil type were also examined for any connection to rut positions. Soil type and traffic intensity were found to be significant factors in rut formation, while DTW and slash reinforcement were not. However, the DTW map combined with other information, such as soil type, could contribute to decision support tools that improve planning of extraction roads.

  • Mohtashami, The forestry research institute of Sweden, Skogforsk, Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail: sima.mohtashami@skogforsk.se (email)
  • Eliasson, The forestry research institute of Sweden, Skogforsk, Uppsala Science Park, SE-751 83 Uppsala, Sweden ORCID http://orcid.org/0000-0002-2038-9864 E-mail: lars.eliasson@skogforsk.se
  • Jansson, The forestry research institute of Sweden, Skogforsk, Uppsala Science Park, SE-751 83 Uppsala, Sweden ORCID http://orcid.org/0000-0002-3018-9161 E-mail: gunnar.jansson@skogforsk.se
  • Sonesson, The forestry research institute of Sweden, Skogforsk, Uppsala Science Park, SE-751 83 Uppsala, Sweden ORCID http://orcid.org/0000-0002-2018-7496 E-mail: johan.sonesson@skogforsk.se
article id 1740, category Research article
Ram P. Sharma, Zdeněk Vacek, Stanislav Vacek. (2017). Modelling tree crown-to-bole diameter ratio for Norway spruce and European beech. Silva Fennica vol. 51 no. 5 article id 1740. https://doi.org/10.14214/sf.1740
Keywords: Picea abies; Fagus sylvatica; dominant height; exponential decay function; mixed effect model; spatially explicit competition index; species proportion; species mixture effect
Highlights: Modelled crown-to-bole diameter ratio (CDBDR) using tree and stand-level predictors, and sample plot random effects; Spatially explicit mixed-effects model described the largest part of CDBDR variation with no significant trend in the residuals; The CDBDR increased with increasing stand development stage and site quality, but decreased with decreasing proportion of the species of interest, and increasing competition.
Abstract | Full text in HTML | Full text in PDF | Author Info

Crown dimensions are correlated to growth of other parts of a tree and often used as predictors in growth models. The crown-to-bole diameter ratio (CDBDR), which is a ratio of maximum crown width to diameter at breast height (DBH), was modelled using data from permanent sample plots located on Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) stands in different parts of the Czech Republic. Among various tree and stand-level measures evaluated, DBH, height to crown base (HCB), dominant height (HDOM), basal area of trees larger in diameter than a subject tree (BAL), basal area proportion of the species of interest (BAPOR), and Hegyi’s competition index (CI) were found to be significant predictors in the CDBDR model. Random effects were included using the mixed-effects modelling to describe sample plot-level variation. For each species, the mixed-effects model described a larger part of the variation of the CDBDR than nonlinear ordinary least squares model with no trend in the residuals. The spatially explicit mixed-effects model showed more attractive fit statistics [conditional R2 ≈ 0.73 (spruce), 0.78 (beech)] than its spatially inexplicit counterpart [conditional R2 ≈ 0.71 (spruce), 0.76 (beech)]. The model showed that CDBDR increased with increasing HDOM – a measure that combines the stand development stage and site quality – but decreased with increasing HCB and competition (increasing BAL and CI), and decreasing proportions of the species of interest (increasing BAPOR). For both species, the spatially explicit mixed-effects model should be a preferred choice for a precise prediction of the CDBDR. The CDBDR model will have various management implications such as determination of spacing, stand basal area, stocking, and planning of appropriate species mixture.

  • Sharma, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521, Praha 6 – Suchdol, Czech Republic E-mail: sharmar@fld.czu.cz (email)
  • Vacek, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521, Praha 6 – Suchdol, Czech Republic E-mail: vacekz@fld.czu.cz
  • Vacek, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521, Praha 6 – Suchdol, Czech Republic E-mail: vacekstanislav@fld.czu.cz

Category : Research note

article id 7798, category Research note
Jānis Liepiņš, Jānis Ivanovs, Andis Lazdiņš, Jurģis Jansons, Kaspars Liepiņš. (2017). Mapping of basic density within European aspen stems in Latvia. Silva Fennica vol. 51 no. 5 article id 7798. https://doi.org/10.14214/sf.7798
Keywords: Populus tremula; wood quality; wood density; bark density; density variations
Highlights: Stem bark is significantly denser than wood and does not follow the same variation patterns along the stem; The main trend in radial variation of wood density was the increase from pith to bark; There is a weak relationship between mean basic density and commonly measured stand and tree parameters.
Abstract | Full text in HTML | Full text in PDF | Author Info

The objective of this study was to investigate basic density and its within-stem variation by studying 84 European aspen stems from 28 forest stands in Latvia. The studied forest stands covered all age classes from young stands to matured forests in representative growth conditions of European aspen. The densities of 2722 wood and 1022 bark specimens were measured from the sampled trees. Only the knot-free wood specimens without obvious wood defects were chosen for analyses. A map of basic density summarizing its radial and axial variations was constructed to show species-specific, within-stem variability and the relationships between density and tree and stand variables were examined. Stem wood and bark of the European aspen show different patterns of basic density variation along the tree stem. Wood density increases from pith to bark up to certain dimensions and shows a slight decrease afterwards. The weighted basic density of bark (446 ± 39.6 kg m–3) was higher than stem wood density (393 ± 30.4 kg m–3). Our results suggest that wood and bark density measurements obtained at breast height can be used for reliable estimation of the densities of whole-tree stem components, while tree parameters such as diameter at breast height (DBH), tree height and social status or stand parameters, including number of trees, basal area and age, are weak predictors in this context.

  • Liepiņš, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia E-mail: janis.liepins@silava.lv (email)
  • Ivanovs, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia E-mail: janis.ivanovs@silava.lv
  • Lazdiņš, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia E-mail: andis.lazdins@silava.lv
  • Jansons, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia E-mail: jurgis.jansons@silava.lv
  • Liepiņš, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia E-mail: kaspars.liepins@silava.lv

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles