Current issue: 58(3)

Under compilation: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'aerial imagery'

Category : Research article

article id 7721, category Research article
Sakari Tuominen, Andras Balazs, Eija Honkavaara, Ilkka Pölönen, Heikki Saari, Teemu Hakala, Niko Viljanen. (2017). Hyperspectral UAV-imagery and photogrammetric canopy height model in estimating forest stand variables. Silva Fennica vol. 51 no. 5 article id 7721. https://doi.org/10.14214/sf.7721
Keywords: forest inventory; digital photogrammetry; aerial imagery; hyperspectral imaging; radiometric calibration; UAVs; stereo-photogrammetric canopy modelling
Highlights: Hyperspectral imagery and photogrammetric 3D point cloud based on RGB imagery were acquired under weather conditions changing from cloudy to sunny; Calibration of hyperspectral imagery was required for compensating the effect of varying weather conditions; The combination of hyperspectral imagery and photogrammetric point cloud data resulted in accurate forest estimates, especially for volumes per tree species.
Abstract | Full text in HTML | Full text in PDF | Author Info

Remote sensing using unmanned aerial vehicle (UAV) -borne sensors is currently a highly interesting approach for the estimation of forest characteristics. 3D remote sensing data from airborne laser scanning or digital stereo photogrammetry enable highly accurate estimation of forest variables related to the volume of growing stock and dimension of the trees, whereas recognition of tree species dominance and proportion of different tree species has been a major complication in remote sensing-based estimation of stand variables. In this study the use of UAV-borne hyperspectral imagery was examined in combination with a high-resolution photogrammetric canopy height model in estimating forest variables of 298 sample plots. Data were captured from eleven separate test sites under weather conditions varying from sunny to cloudy and partially cloudy. Both calibrated hyperspectral reflectance images and uncalibrated imagery were tested in combination with a canopy height model based on RGB camera imagery using the k-nearest neighbour estimation method. The results indicate that this data combination allows accurate estimation of stand volume, mean height and diameter: the best relative RMSE values for those variables were 22.7%, 7.4% and 14.7%, respectively. In estimating volume and dimension-related variables, the use of a calibrated image mosaic did not bring significant improvement in the results. In estimating the volumes of individual tree species, the use of calibrated hyperspectral imagery generally brought marked improvement in the estimation accuracy; the best relative RMSE values for the volumes for pine, spruce, larch and broadleaved trees were 34.5%, 57.2%, 45.7% and 42.0%, respectively.

  • Tuominen, Natural Resources Institute Finland (Luke), Economics and society, P.O. Box 2, FI-00791 Helsinki, Finland ORCID http://orcid.org/0000-0001-5429-3433 E-mail: sakari.tuominen@luke.fi (email)
  • Balazs, Natural Resources Institute Finland (Luke), Economics and society, P.O. Box 2, FI-00791 Helsinki, Finland E-mail: andras.balazs@luke.fi
  • Honkavaara, Finnish Geospatial Research Institute, National Land Survey of Finland, Geodeetinrinne 2, FI-02430 Masala, Finland E-mail: eija.honkavaara@nls.fi
  • Pölönen, University of Jyväskylä, Faculty of Information Technology, P.O. Box 35, FI-40014 Jyväskylä, Finland E-mail: ilkka.polonen@jyu.fi
  • Saari, VTT Microelectronics, P.O. Box 1000, FI-02044 VTT, Finland E-mail: heikki.saari@vtt.fi
  • Hakala, Finnish Geospatial Research Institute, National Land Survey of Finland, Geodeetinrinne 2, FI-02430 Masala, Finland E-mail: teemu.hakala@nls.fi
  • Viljanen, Finnish Geospatial Research Institute, National Land Survey of Finland, Geodeetinrinne 2, FI-02430 Masala, Finland E-mail: niko.viljanen@nls.fi
article id 7743, category Research article
Sakari Tuominen, Timo Pitkänen, Andras Balazs, Annika Kangas. (2017). Improving Finnish Multi-Source National Forest Inventory by 3D aerial imaging. Silva Fennica vol. 51 no. 4 article id 7743. https://doi.org/10.14214/sf.7743
Keywords: forest inventory; remote sensing; spatial autocorrelation; spatial distribution; aerial imagery; stereo-photogrammetry
Highlights: 3D aerial imaging provides a feasible method for estimating forest variables in the form of thematic maps in large area inventories; Photogrammetric 3D data based on aerial imagery that was originally acquired for orthomosaic production was tested in estimating stand variables; Photogrammetric 3D data highly improved the accuracy of forest estimates compared to traditional 2D remote sensing imagery.
Abstract | Full text in HTML | Full text in PDF | Author Info

Optical 2D remote sensing techniques such as aerial photographing and satellite imaging have been used in forest inventory for a long time. During the last 15 years, airborne laser scanning (ALS) has been adopted in many countries for the estimation of forest attributes at stand and sub-stand levels. Compared to optical remote sensing data sources, ALS data are particularly well-suited for the estimation of forest attributes related to the physical dimensions of trees due to its 3D information. Similar to ALS, it is possible to derive a 3D forest canopy model based on aerial imagery using digital aerial photogrammetry. In this study, we compared the accuracy and spatial characteristics of 2D satellite and aerial imagery as well as 3D ALS and photogrammetric remote sensing data in the estimation of forest inventory variables using k-NN imputation and 2469 National Forest Inventory (NFI) sample plots in a study area covering approximately 5800 km2. Both 2D data were very close to each other in terms of accuracy, as were both the 3D materials. On the other hand, the difference between the 2D and 3D materials was very clear. The 3D data produce a map where the hotspots of volume, for instance, are much clearer than with 2D remote sensing imagery. The spatial correlation in the map produced with 2D data shows a lower short-range correlation, but the correlations approach the same level after 200 meters. The difference may be of importance, for instance, when analyzing the efficiency of different sampling designs and when estimating harvesting potential.

  • Tuominen, Natural Resources Institute Finland (Luke), Economics and Society, P.O. Box 2, FI-00791 Helsinki, Finland E-mail: sakari.tuominen@luke.fi (email)
  • Pitkänen, Natural Resources Institute Finland (Luke), Economics and Society, P.O. Box 2, FI-00791 Helsinki, Finland E-mail: timo.p.pitkanen@luke.fi
  • Balazs, Natural Resources Institute Finland (Luke), Economics and Society, P.O. Box 2, FI-00791 Helsinki, Finland E-mail: andras.balazs@luke.fi
  • Kangas, Natural Resources Institute Finland (Luke), Economics and Society, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: Annika.Kangas@luke.fi
article id 1348, category Research article
Sakari Tuominen, Andras Balazs, Heikki Saari, Ilkka Pölönen, Janne Sarkeala, Risto Viitala. (2015). Unmanned aerial system imagery and photogrammetric canopy height data in area-based estimation of forest variables. Silva Fennica vol. 49 no. 5 article id 1348. https://doi.org/10.14214/sf.1348
Keywords: forest inventory; aerial imagery; unmanned aerial system; UAV; photogrammetric surface model; canopy height model
Highlights: Orthoimage mosaic and 3D canopy height model were derived from UAV-borne colour-infrared digital camera imagery and ALS-based terrain model; Features extracted from orthomosaic and canopy height data were used for estimating forest variables; The accuracy of forest estimates was similar to that of the combination of ALS and digital aerial imagery.
Abstract | Full text in HTML | Full text in PDF | Author Info

In this paper we examine the feasibility of data from unmanned aerial vehicle (UAV)-borne aerial imagery in stand-level forest inventory. As airborne sensor platforms, UAVs offer advantages cost and flexibility over traditional manned aircraft in forest remote sensing applications in small areas, but they lack range and endurance in larger areas. On the other hand, advances in the processing of digital stereo photography make it possible to produce three-dimensional (3D) forest canopy data on the basis of images acquired using simple lightweight digital camera sensors. In this study, an aerial image orthomosaic and 3D photogrammetric canopy height data were derived from the images acquired by a UAV-borne camera sensor. Laser-based digital terrain model was applied for estimating ground elevation. Features extracted from orthoimages and 3D canopy height data were used to estimate forest variables of sample plots. K-nearest neighbor method was used in the estimation, and a genetic algorithm was applied for selecting an appropriate set of features for the estimation task. Among the selected features, 3D canopy features were given the greatest weight in the estimation supplemented by textural image features. Spectral aerial photograph features were given very low weight in the selected feature set. The accuracy of the forest estimates based on a combination of photogrammetric 3D data and orthoimagery from UAV-borne aerial imaging was at a similar level to those based on airborne laser scanning data and aerial imagery acquired using purpose-built aerial camera from the same study area.

  • Tuominen, Natural Resources Institute Finland (Luke), Economics and society, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: sakari.tuominen@luke.fi (email)
  • Balazs, Natural Resources Institute Finland (Luke), Economics and society, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: andras.balazs@luke.fi
  • Saari, VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland E-mail: Heikki.Saari@vtt.fi
  • Pölönen, University of Jyväskylä, Department of Mathematical Information Technology, P.O. Box 35, FI-40014 University of Jyväskylä, Finland E-mail: ilkka.polonen@jyu.fi
  • Sarkeala, Mosaicmill Oy, Kultarikontie 1, FI-01300 Vantaa, Finland E-mail: janne.sarkeala@mosaicmill.com
  • Viitala, Häme University of Applied Sciences (HAMK), P.O. Box 230, FI-13101 Hämeenlinna, Finland E-mail: Risto.Viitala@hamk.fi
article id 983, category Research article
Sakari Tuominen, Juho Pitkänen, Andras Balazs, Kari T. Korhonen, Pekka Hyvönen, Eero Muinonen. (2014). NFI plots as complementary reference data in forest inventory based on airborne laser scanning and aerial photography in Finland. Silva Fennica vol. 48 no. 2 article id 983. https://doi.org/10.14214/sf.983
Keywords: airborne laser scanning; National Forest Inventory; aerial imagery; plot sampling
Highlights: Using NFI plots in forest management inventories could provide a way for rationalising forest inventory data acquisition; NFI plots were used as additional reference data in laser scanning and aerial image based forest inventory; NFI plots improved the estimates of some forest variables; There are differences between the two inventory types that cause difficulties in combining the data.
Abstract | Full text in HTML | Full text in PDF | Author Info
In Finland, there are currently two, parallel sample-plot-based forest inventory systems, which differ in their methodologies, sampling designs, and objectives. One is the National Forest Inventory (NFI), aimed at unbiased inventory results at national and regional level. The other is the Forest Centre’s management-oriented forest inventory based on interpretation of airborne laser scanning and aerial images, with the aim of locally accurate stand-level forest estimates. The National Forest Inventory utilises relascope sample plots with systematic cluster sampling. This inventory method is optimised for accuracy of regional volume estimates. In contrast, the management-oriented forest inventory utilises circular sample plots with an allocation system covering certain pre-defined forest classes in the inventory area. This method is optimised to produce reference data for interpretation of the remote-sensing materials in use. In this study, we tested the feasibility of the National Forest Inventory sample plots in provision of additional reference data for the management-oriented inventory. Various combinations of NFI plots and management inventory plots were tested in the interpretation of the laser and aerial-image data. Adding NFI plots in the reference data generally improved the accuracy of the volume estimates by tree species but not the estimates of total volume or stand mean height and diameter. The difference between the plot types in the NFI and management inventories causes difficulties in combination of the two datasets.
  • Tuominen, Finnish Forest Research Institute, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: sakari.tuominen@metla.fi (email)
  • Pitkänen, Finnish Forest Research Institute, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: juho.pitkanen@metla.fi
  • Balazs, Finnish Forest Research Institute, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: andras.balazs@metla.fi
  • Korhonen, Finnish Forest Research Institute, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: kari.t.korhonen@metla.fi
  • Hyvönen, Finnish Forest Research Institute, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: pekka.hyvonen@metla.fi
  • Muinonen, Finnish Forest Research Institute, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: eero.muinonen@metla.fi
article id 456, category Research article
Sam B. Coggins, Nicholas C. Coops, Michael A. Wulder. (2010). Improvement of low level bark beetle damage estimates with adaptive cluster sampling. Silva Fennica vol. 44 no. 2 article id 456. https://doi.org/10.14214/sf.456
Keywords: forest inventory; adaptive cluster sampling; mountain pine beetle; object-based classification; high spatial resolution; satellite; digital aerial imagery
Abstract | View details | Full text in PDF | Author Info
Detection of low level infestation in forest stands is of principle importance to determine effective control strategies before the attack spread to large areas. Of particular concern is the ongoing mountain pine beetle, Dendroctonus ponderosae (Hopkins) epidemic, which has caused approximately 14 million hectares of damage to lodgepole pine (Pinus contorta Dougl. ex. Loud var. latifolia Engl.) forests in western Canada. At the stand level attacked trees are often difficult to locate and can remain undetected until the infestation has become established beyond a small number of trees. As such, methods are required to detect and characterise low levels of attack prior to infestation expansion, to inform management, and to aid mitigation activities. In this paper, an adaptive cluster sampling approach was applied to very fine-scale (20 cm) digital aerial imagery to locate mountain pine beetle damaged trees at the leading edge of the current infestation. Results indicated a mean number of 7.36 infested trees per hectare with a variance of 18.34. In contrast a non-adaptive approach estimated the mean number of infested trees in the same area to be 61.56 infested trees per hectare with a variance of 41.43. Using a relative efficiency estimator the adaptive cluster sampling approach was found to be over two times more efficient when compared to the non-adaptive approach.
  • Coggins, Department of Forest Resources Management, University of British Columbia, 2424 Main Mall, Vancouver, B.C., Canada V6T 1Z4 E-mail: scoggins@interchange.ubc.ca (email)
  • Coops, Department of Forest Resources Management, University of British Columbia, 2424 Main Mall, Vancouver, B.C., Canada V6T 1Z4 E-mail: ncc@nn.ca
  • Wulder, Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Rd., Victoria, B.C., Canada V8Z 1M5 E-mail: maw@nn.ca

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles