Current issue: 58(4)

Under compilation: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'digital photogrammetry'

Category : Research article

article id 7721, category Research article
Sakari Tuominen, Andras Balazs, Eija Honkavaara, Ilkka Pölönen, Heikki Saari, Teemu Hakala, Niko Viljanen. (2017). Hyperspectral UAV-imagery and photogrammetric canopy height model in estimating forest stand variables. Silva Fennica vol. 51 no. 5 article id 7721. https://doi.org/10.14214/sf.7721
Keywords: forest inventory; digital photogrammetry; aerial imagery; hyperspectral imaging; radiometric calibration; UAVs; stereo-photogrammetric canopy modelling
Highlights: Hyperspectral imagery and photogrammetric 3D point cloud based on RGB imagery were acquired under weather conditions changing from cloudy to sunny; Calibration of hyperspectral imagery was required for compensating the effect of varying weather conditions; The combination of hyperspectral imagery and photogrammetric point cloud data resulted in accurate forest estimates, especially for volumes per tree species.
Abstract | Full text in HTML | Full text in PDF | Author Info

Remote sensing using unmanned aerial vehicle (UAV) -borne sensors is currently a highly interesting approach for the estimation of forest characteristics. 3D remote sensing data from airborne laser scanning or digital stereo photogrammetry enable highly accurate estimation of forest variables related to the volume of growing stock and dimension of the trees, whereas recognition of tree species dominance and proportion of different tree species has been a major complication in remote sensing-based estimation of stand variables. In this study the use of UAV-borne hyperspectral imagery was examined in combination with a high-resolution photogrammetric canopy height model in estimating forest variables of 298 sample plots. Data were captured from eleven separate test sites under weather conditions varying from sunny to cloudy and partially cloudy. Both calibrated hyperspectral reflectance images and uncalibrated imagery were tested in combination with a canopy height model based on RGB camera imagery using the k-nearest neighbour estimation method. The results indicate that this data combination allows accurate estimation of stand volume, mean height and diameter: the best relative RMSE values for those variables were 22.7%, 7.4% and 14.7%, respectively. In estimating volume and dimension-related variables, the use of a calibrated image mosaic did not bring significant improvement in the results. In estimating the volumes of individual tree species, the use of calibrated hyperspectral imagery generally brought marked improvement in the estimation accuracy; the best relative RMSE values for the volumes for pine, spruce, larch and broadleaved trees were 34.5%, 57.2%, 45.7% and 42.0%, respectively.

  • Tuominen, Natural Resources Institute Finland (Luke), Economics and society, P.O. Box 2, FI-00791 Helsinki, Finland ORCID http://orcid.org/0000-0001-5429-3433 E-mail: sakari.tuominen@luke.fi (email)
  • Balazs, Natural Resources Institute Finland (Luke), Economics and society, P.O. Box 2, FI-00791 Helsinki, Finland E-mail: andras.balazs@luke.fi
  • Honkavaara, Finnish Geospatial Research Institute, National Land Survey of Finland, Geodeetinrinne 2, FI-02430 Masala, Finland E-mail: eija.honkavaara@nls.fi
  • Pölönen, University of Jyväskylä, Faculty of Information Technology, P.O. Box 35, FI-40014 Jyväskylä, Finland E-mail: ilkka.polonen@jyu.fi
  • Saari, VTT Microelectronics, P.O. Box 1000, FI-02044 VTT, Finland E-mail: heikki.saari@vtt.fi
  • Hakala, Finnish Geospatial Research Institute, National Land Survey of Finland, Geodeetinrinne 2, FI-02430 Masala, Finland E-mail: teemu.hakala@nls.fi
  • Viljanen, Finnish Geospatial Research Institute, National Land Survey of Finland, Geodeetinrinne 2, FI-02430 Masala, Finland E-mail: niko.viljanen@nls.fi
article id 335, category Research article
Markus Holopainen, Mervi Talvitie. (2006). Effect of data acquisition accuracy on timing of stand harvests and expected net present value. Silva Fennica vol. 40 no. 3 article id 335. https://doi.org/10.14214/sf.335
Keywords: forest inventory; laser scanning; digital aerial photographs; digital photogrammetry; net present value; expected net present value loss
Abstract | View details | Full text in PDF | Author Info
Modern remote sensing provides cost-efficient spatial digital data that are more accurate than before. However, the influence of increased accuracy and cost-efficiency on simulations of forest management planning has not been evaluated. The aim of the present study was to analyse the effect of data acquisition accuracy on standwise forest inventory by comparing the accuracy and cost of traditional compartmentwise inventory methods with 2D and 3D measurements of digital aerial photographs and airborne laser scanning. Comparison was based on the expected net present value (NPV), i.e. economic losses that consisted of the inventory costs and incorrect timings of treatments. The reference data, totalling 700 ha, were measured from Central Park in the city of Helsinki, Finland. The data were simulated to final cut with a MOTTI simulator, which is a stand-level analysis tool that can be used to assess the effects of alternative forest management practices on growth and timber yield. The results showed that when inventory costs were not considered there were no significant differences between the expected NPV losses in 3D measurements of digital aerial photographs, laser scanning and the compartmentwise method. When inventory costs were taken into account, the compartmentwise method was still the most efficient inventory method in the study area. Forest inventories, however, are usually directed to larger areas when the costs per hectare of remote-sensing methods decrease. As a result of better accuracies, 3D and compartmentwise methods always produce better results than the 2D method when NPV losses are accounted. Simulations of this type are based on the accuracies and costs of the 3D data available today, assuming that the data can be used in tree-level measurements.
  • Holopainen, University of Helsinki, Department of Forest Resource Management, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: markus.holopainen@helsinki.fi (email)
  • Talvitie, University of Helsinki, Department of Forest Resource Management, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: mt@nn.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles