As Finland has neither coal nor oil resources, it has had to resort to large-scale imports dependant on foreign relations and especially maritime connections. When the outbreak of World War II broke these connections, the state had to institute comprehensive controls and measures to ensure the supply of fuels. The present article deals with the measures taken by the authorities at that time.
Although the danger to Finland of interruption in fuel imports had been pointed out, the Finns had made hardly any preparations to manage on their own. In autumn 1939 there was no reserve stocks and particularly vulnerable was the question of motor fuels and lubricants.
When the Winter War ended in spring 1940, it was realised that special measures were needed. A law was enacted that concerned both the revival of production and regulation of consumption. For instance, every forest owner was notified of his share of the fuelwood logging. The wood processing industry had been accustomed to maintain stocks of wood covering two years’ requirements, but these inventories, too, were depleted by 1944. The law for safeguarding the supply of timber, enacted in early 1945, invested far-reaching powers in the authorities, and the logging plans were exceptionally large in 1945-47. Controls governing forestry and the forest industry were discontinued in 1947.
In Finland it is necessary to maintain a state of preparedness. This applies above all to fossil fuels and particularly oils.
The PDF includes a summary in English.
This project studied the value of various shoot and root-system characteristics as indicators of plantability of transplants. Correlation and regression analysis was used to compare these characteristics. The study material consisted of two-year Scots pine (Pinus sylvestris L.) transplants that had grown in a plastic greenhouse for the first year and then been transplanted in the open. The seedlings had been transplanted in the field without treatment or with the roots cut to a length of 8 cm. A part was transplanted without treatment into plastic pails. A gravimetric and photometric method was used to obtain a description of the surface area of the root systems.
The results show that the photometric value gives a good picture of the surface area of the root system. The greatest advantage offered by the method is the simplicity and rapidity of measurement. The gravimetric, and especially the titrimetric, measurement takes much more time per plant. Photometric measurement affects plantability little, and measured and planted transplants can be followed up in the field. In gravimetric measurements, it was found that fresh and dry weight of the plants were closely correlated.
Mycorrhizal frequency in the root systems gave a good picture of the surface area of the root system. The number of living roots-tips was also rather closely correlated with the surface area of the root system. The other morphological characteristics failed to serve as a satisfactory index for the surface area of root systems. The one closest correlated was the annual leader growth. The second best was stem diameter; the height of the plant, on the contrary, was rather poorly correlated with the other characteristics.
The PDF includes a summary in English.
Certain biocides used in production of tree nursery stock exterminate undesirable organisms but cause an abnormal growth stimulation of plants. The reforestation material has decreased survival potential because of high degree of succulence, top:root and height:diameter ratios, and low specific gravity and root surface area. Some fumigants impede mycorrhizae development and arrest phosphorus uptake. Recovery of growth potential was achieved by aluminium sulphate and/or fermented compost inoculated with mycorrhiza-forming fungi.
The PDF includes a summary in Finnish.
Measurement of timber in a vehicle load or in a bundle is best performed at the mill where the measuring of large quantities can be mechanized and sampling is possible. Load measurement methods include calculation of the number of units, measurement of pile volume, weight scaling and determination of solid content in accordance with Archimedes principle by immersion in water. For some timber assortments, load measurement is sufficiently accurate and suitable unit of measure. The accuracy of load measurement can be increased or the result can be converted by sampling to a more appropriate unit of measure.
In load sampling measurement, a sample is taken from the population, and the desired more accurate measurement is made from the sample. The basic measurement for the whole population can be converted into the more accurate measuring unit by means of the ratio between it and the basic measure. Unit, pile and weight sampling can be used. The aim for pulpwood is to calculate the dry matter content without bark, which means that the amount of bark and the dry weight of wood must be determined by sampling.
The size of the sample depends on size of the population, variation of the ratio between the loads, and the accuracy required. As the quantity of wood to be measured decreases, sampling measurement will reduce the measuring costs by up to 80%. In addition, there is saving in costs by rationalization.
The PDF includes a summary in English.