Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'airborne laser scanning'

Category : Research article

article id 23023, category Research article
Lennart Noordermeer, Hans Ole Ørka, Terje Gobakken. (2023). Imputing stem frequency distributions using harvester and airborne laser scanner data: a comparison of inventory approaches. Silva Fennica vol. 57 no. 3 article id 23023. https://doi.org/10.14214/sf.23023
Keywords: forest inventory; airborne laser scanning; harvester data; inventory approaches
Highlights: We imputed stem frequency distributions using harvester reference data and predictor variables computed from airborne laser scanner data.; Stand-level distributions of stem diameter, tree height, volume, and sawn wood volume; (Enhanced) area-based and semi-individual tree crown approaches outperformed the individual tree crown method.
Abstract | Full text in HTML | Full text in PDF | Author Info
Stem frequency distributions provide useful information for pre-harvest planning. We compared four inventory approaches for imputing stem frequency distributions using harvester data as reference data and predictor variables computed from airborne laser scanner (ALS) data. We imputed distributions and stand mean values of stem diameter, tree height, volume, and sawn wood volume using the k-nearest neighbor technique. We compared the inventory approaches: (1) individual tree crown (ITC), semi-ITC, area-based (ABA) and enhanced ABA (EABA). We assessed the accuracies of imputed distributions using a variant of the Reynold’s error index, obtaining the best mean accuracies of 0.13, 0.13, 0.10 and 0.10 for distributions of stem diameter, tree height, volume and sawn wood volume, respectively. Accuracies obtained using the semi-ITC, ABA and EABA inventory approaches were significantly better than accuracies obtained using the ITC approach. The forest attribute, inventory approach, stand size and the laser pulse density had significant effects on the accuracies of imputed frequency distributions, however the ALS delay and percentage of deciduous trees did not. This study highlights the utility of harvester and ALS data for imputing stem frequency distributions in pre-harvest inventories.
  • Noordermeer, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway ORCID https://orcid.org/0000-0002-8840-0345 E-mail: lennart.noordermeer@nmbu.no (email)
  • Ørka, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway ORCID https://orcid.org/0000-0002-7492-8608 E-mail: hans-ole.orka@nmbu.no
  • Gobakken, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: terje.gobakken@nmbu.no
article id 10712, category Research article
Kenneth Olofsson, Johan Holmgren. (2022). Co-registration of single tree maps and data captured by a moving sensor using stem diameter weighted linking. Silva Fennica vol. 56 no. 3 article id 10712. https://doi.org/10.14214/sf.10712
Keywords: airborne laser scanning; terrestrial laser scanning; field plot; mobile laser scanning; simultaneous location and mapping; stem map
Highlights: A stem diameter weighted linking algorithm for tree maps was introduced which improves linking accuracy; A new simultaneous location and mapping-based co-registration method for stem maps measured with moving sensors was introduced that operates with high linking accuracy.
Abstract | Full text in HTML | Full text in PDF | Author Info

A new method for the co-registration of single tree data in forest stands and forest plots applicable to static as well as dynamic data capture is presented. This method consists of a stem diameter weighted linking algorithm that improves the linking accuracy when operating on diverse diameter stands with stem position errors in the single tree detectors. A co-registration quality metric threshold, QT, is also introduced which makes it possible to discriminate between correct and incorrect stem map co-registrations with high probability (>99%). These two features are combined to a simultaneous location and mapping-based co-registration method that operates with high linking accuracy and that can handle sensors with drifting errors and signal bias. A test with simulated data shows that the method has an 89.35% detection rate. The statistics of different settings in a simulation study are presented, where the effect of stem density and position errors were investigated. A test case with real sensor data from a forest stand shows that the average nearest neighbor distances decreased from 1.90 m to 0.51 m, which indicates the feasibility of this method.

  • Olofsson, Section of Forest Remote Sensing, Department of Forest Resource Management, Swedish University of Agricultural Sciences, Umeå, Sweden ORCID https://orcid.org/0000-0002-2836-2316 E-mail: kenneth.olofsson@slu.se (email)
  • Holmgren, Section of Forest Remote Sensing, Department of Forest Resource Management, Swedish University of Agricultural Sciences, Umeå, Sweden ORCID https://orcid.org/0000-0002-7112-8015 E-mail: johan.holmgren@slu.se
article id 10244, category Research article
Hans Ole Ørka, Endre H. Hansen, Michele Dalponte, Terje Gobakken, Erik Næsset. (2021). Large-area inventory of species composition using airborne laser scanning and hyperspectral data. Silva Fennica vol. 55 no. 4 article id 10244. https://doi.org/10.14214/sf.10244
Keywords: airborne laser scanning; Dirichlet regression; hyperspectral; species proportions; species-specific forest inventory
Highlights: A methodology for using hyperspectral data in the area-based approach is presented; Hyperspectral data produced satisfactory results for species composition in 90% of the cases; Parametric Dirichlet regression is an applicable method to predicting species proportions; Normalization and a tree-based selection of pixels provided the overall best results; Both visible to near-infrared and shortwave-infrared sensors gave acceptable results.
Abstract | Full text in HTML | Full text in PDF | Author Info

Tree species composition is an essential attribute in stand-level forest management inventories and remotely sensed data might be useful for its estimation. Previous studies on this topic have had several operational drawbacks, e.g., performance studied at a small scale and at a single tree-level with large fieldwork costs. The current study presents the results from a large-area inventory providing species composition following an operational area-based approach. The study utilizes a combination of airborne laser scanning and hyperspectral data and 97 field sample plots of 250 m2 collected over 350 km2 of productive forest in Norway. The results show that, with the availability of hyperspectral data, species-specific volume proportions can be provided in operational forest management inventories with acceptable results in 90% of the cases at the plot level. Dominant species were classified with an overall accuracy of 91% and a kappa-value of 0.73. Species-specific volumes were estimated with relative root mean square differences of 34%, 87%, and 102% for Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and deciduous species, respectively. A novel tree-based approach for selecting pixels improved the results compared to a traditional approach based on the normalized difference vegetation index.

  • Ørka, Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway ORCID https://orcid.org/0000-0002-7492-8608 E-mail: hans-ole.orka@nmbu.no (email)
  • Hansen, Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway; Norwegian Forest Extension Institute, Honnevegen 60, NO-2836 Biri, Norway ORCID https://orcid.org/0000-0001-5174-4497 E-mail: eh@skogkurs.no
  • Dalponte, Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione E. Mach, Via E. Mach 1, 38010 San Michele all’Adige, TN, Italy ORCID https://orcid.org/0000-0001-9850-8985 E-mail: michele.dalponte@fmach.it
  • Gobakken, Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway ORCID https://orcid.org/0000-0001-5534-049X E-mail: terje.gobakken@nmbu.no
  • Næsset, Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway E-mail: erik.naesset@nmbu.no
article id 10272, category Research article
Ana de Lera Garrido, Terje Gobakken, Hans Ole Ørka, Erik Næsset, Ole M. Bollandsås. (2020). Reuse of field data in ALS-assisted forest inventory. Silva Fennica vol. 54 no. 5 article id 10272. https://doi.org/10.14214/sf.10272
Keywords: airborne laser scanning; data reuse; temporal model transferability
Highlights: Six biophysical forest attributes were estimated for small stands without using up-to-date field data; The approaches included reused model relationships and forecasted field data; The accuracy of height estimates was comparable with the accuracy of an ordinary forest inventory with up-to-date field- and ALS data; Both approaches tended to produce estimates systematically different from the ground reference.
Abstract | Full text in HTML | Full text in PDF | Author Info

Forest inventories assisted by wall-to-wall airborne laser scanning (ALS), have become common practice in many countries. One major cost component in these inventories is the measurement of field sample plots used for constructing models relating biophysical forest attributes to metrics derived from ALS data. In areas where ALS-assisted forest inventories are planned, and in which the previous inventories were performed with the same method, reusing previously acquired field data can potentially reduce costs, either by (1) temporally transferring previously constructed models or (2) projecting field reference data using growth models that can serve as field reference data for model construction with up-to-date ALS data. In this study, we analyzed these two approaches of reusing field data acquired 15 years prior to the current ALS acquisition to estimate six up-to-date forest attributes (dominant tree height, mean tree height, stem number, stand basal area, volume, and aboveground biomass). Both approaches were evaluated within small stands with sizes of approximately 0.37 ha, assessing differences between estimates and ground reference values. The estimates were also compared to results from an up-to-date forest inventory relying on concurrent field- and ALS data. The results showed that even though the reuse of historical information has some potential and could be beneficial for forest inventories, systematic errors may appear prominent and need to be overcome to use it operationally. Our study showed systematic trends towards the overestimation of lower-range ground references and underestimation of the upper-range ground references.

  • de Lera Garrido, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: ana.maria.lera.garrido@nmbu.no (email)
  • Gobakken, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: terje.gobakken@nmbu.no
  • Ørka, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: hans-ole.orka@nmbu.no
  • Næsset, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: erik.naesset@nmbu.no
  • Bollandsås, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway E-mail: ole.martin.bollandsas@nmbu.no
article id 2021, category Research article
Jonas Bohlin, Inka Bohlin, Jonas Jonzén, Mats Nilsson. (2017). Mapping forest attributes using data from stereophotogrammetry of aerial images and field data from the national forest inventory. Silva Fennica vol. 51 no. 2 article id 2021. https://doi.org/10.14214/sf.2021
Keywords: airborne laser scanning; National Forest Inventory; photogrammetry; aerial images; forest attribute estimation; image matching; large area
Highlights: Image based forest attribute map generated using NFI plots show similar accuracy as currently used LiDAR based forest attribute map; Also similar accuracies were found for different forest types; Aerial images from leaf-off season is not recommended.
Abstract | Full text in HTML | Full text in PDF | Author Info

Exploring the possibility to produce nation-wide forest attribute maps using stereophotogrammetry of aerial images, the national terrain model and data from the National Forest Inventory (NFI). The study areas are four image acquisition blocks in mid- and south Sweden. Regression models were developed and applied to 12.5 m × 12.5 m raster cells for each block and validation was done with an independent dataset of forest stands. Model performance was compared for eight different forest types separately and the accuracies between forest types clearly differs for both image- and LiDAR methods, but between methods the difference in accuracy is small at plot level. At stand level, the root mean square error in percent of the mean (RMSE%) were ranging: from 7.7% to 10.5% for mean height; from 12.0% to 17.8% for mean diameter; from 21.8% to 22.8% for stem volume; and from 17.7% to 21.1% for basal area. This study clearly shows that aerial images from the national image program together with field sample plots from the NFI can be used for large area forest attribute mapping.

  • Bohlin, Department of Forest Resource Management, Swedish University of Agricultural Sciences, S-901 35 Umeå, Sweden ORCID http://orcid.org/0000-0002-3318-5967 E-mail: jonas.bohlin@slu.se (email)
  • Bohlin, Department of Forest Resource Management, Swedish University of Agricultural Sciences, S-901 35 Umeå, Sweden ORCID http://orcid.org/0000-0003-1224-6684 E-mail: inka.bohlin@slu.se
  • Jonzén, Department of Forest Resource Management, Swedish University of Agricultural Sciences, S-901 35 Umeå, Sweden E-mail: jonas.jonzen@slu.se
  • Nilsson, Department of Forest Resource Management, Swedish University of Agricultural Sciences, S-901 35 Umeå, Sweden ORCID http://orcid.org/0000-0001-7394-6305 E-mail: mats.nilsson@slu.se
article id 983, category Research article
Sakari Tuominen, Juho Pitkänen, Andras Balazs, Kari T. Korhonen, Pekka Hyvönen, Eero Muinonen. (2014). NFI plots as complementary reference data in forest inventory based on airborne laser scanning and aerial photography in Finland. Silva Fennica vol. 48 no. 2 article id 983. https://doi.org/10.14214/sf.983
Keywords: airborne laser scanning; National Forest Inventory; aerial imagery; plot sampling
Highlights: Using NFI plots in forest management inventories could provide a way for rationalising forest inventory data acquisition; NFI plots were used as additional reference data in laser scanning and aerial image based forest inventory; NFI plots improved the estimates of some forest variables; There are differences between the two inventory types that cause difficulties in combining the data.
Abstract | Full text in HTML | Full text in PDF | Author Info
In Finland, there are currently two, parallel sample-plot-based forest inventory systems, which differ in their methodologies, sampling designs, and objectives. One is the National Forest Inventory (NFI), aimed at unbiased inventory results at national and regional level. The other is the Forest Centre’s management-oriented forest inventory based on interpretation of airborne laser scanning and aerial images, with the aim of locally accurate stand-level forest estimates. The National Forest Inventory utilises relascope sample plots with systematic cluster sampling. This inventory method is optimised for accuracy of regional volume estimates. In contrast, the management-oriented forest inventory utilises circular sample plots with an allocation system covering certain pre-defined forest classes in the inventory area. This method is optimised to produce reference data for interpretation of the remote-sensing materials in use. In this study, we tested the feasibility of the National Forest Inventory sample plots in provision of additional reference data for the management-oriented inventory. Various combinations of NFI plots and management inventory plots were tested in the interpretation of the laser and aerial-image data. Adding NFI plots in the reference data generally improved the accuracy of the volume estimates by tree species but not the estimates of total volume or stand mean height and diameter. The difference between the plot types in the NFI and management inventories causes difficulties in combination of the two datasets.
  • Tuominen, Finnish Forest Research Institute, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: sakari.tuominen@metla.fi (email)
  • Pitkänen, Finnish Forest Research Institute, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: juho.pitkanen@metla.fi
  • Balazs, Finnish Forest Research Institute, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: andras.balazs@metla.fi
  • Korhonen, Finnish Forest Research Institute, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: kari.t.korhonen@metla.fi
  • Hyvönen, Finnish Forest Research Institute, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: pekka.hyvonen@metla.fi
  • Muinonen, Finnish Forest Research Institute, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: eero.muinonen@metla.fi
article id 943, category Research article
Terje Gobakken, Lauri Korhonen, Erik Næsset. (2013). Laser-assisted selection of field plots for an area-based forest inventory. Silva Fennica vol. 47 no. 5 article id 943. https://doi.org/10.14214/sf.943
Keywords: forest inventory; LIDAR; airborne laser scanning; stratified sampling; area-based approach
Highlights: Using laser data as auxiliary information in the selection of field plot locations helps to decrease costs in forest inventories based on airborne laser scanning; Two independent, differently selected sets of field plots were used for model fitting, and third for validation; Using partial instead of ordinary least squares had no major influence on the results; Forty well placed plots produced fairly reliable volume estimates.
Abstract | Full text in HTML | Full text in PDF | Author Info
Field measurements conducted on sample plots are a major cost component in airborne laser scanning (ALS) based forest inventories, as field data is needed to obtain reference variables for the statistical models. The ALS data also provides an excellent source of prior information that may be used in the design phase of the field survey to reduce the size of the field data set. In the current study, we acquired two independent modeling data sets: one with ALS-assisted and another with random plot selection. A third data set was used for validation. One canopy height and one canopy density variable were used as a basis for the ALS-assisted selection. Ordinary and partial least squares regressions for stem volume were fitted for four different strata using the two data sets separately. The results show that the ALS-assisted plot selection helped to decrease the root mean square error (RMSE) of the predicted volume. Although the differences in RMSE were relatively small, models based on random plot selection showed larger mean differences from the reference in the independent validation data. Furthermore, a sub-sampling experiment showed that 40 well placed plots should be enough for fairly reliable predictions.
  • Gobakken, Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, Ås, Norway E-mail: terje.gobakken@umb.no
  • Korhonen, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: lauri.korhonen@uef.fi (email)
  • Næsset, Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, Ås, Norway E-mail: erik.naesset@umb.no
article id 952, category Research article
Lauri Korhonen, Inka Pippuri, Petteri Packalén, Ville Heikkinen, Matti Maltamo, Juho Heikkilä. (2013). Detection of the need for seedling stand tending using high-resolution remote sensing data. Silva Fennica vol. 47 no. 2 article id 952. https://doi.org/10.14214/sf.952
Keywords: forest management; airborne laser scanning; logistic regression; seedling stand; tending; support vector machine
Abstract | Full text in HTML | Full text in PDF | Author Info
Seedling stands are problematic in airborne laser scanning (ALS) based stand level forest management inventories, as the stem density and species proportions are difficult to estimate accurately using only remotely sensed data. Thus the seedling stands must still be checked in the field, which results in an increase in costs. In this study we tested an approach where ALS data and aerial images are used to directly classify the seedling stands into two categories: those that involve tending within the next five years and those which involve no tending. Standard ALS-based height and density features, together with texture and spectral features calculated from aerial images, were used as inputs to two classifiers: logistic regression and the support vector machine (SVM). The classifiers were trained using 208 seedling plots whose tending need was estimated by a local forestry expert. The classification was validated on 68 separate seedling stands. In the training data, the logistic model’s kappa coefficient was 0.55 and overall accuracy (OA) 77%. The SVM did slightly better with a kappa = 0.71 and an OA = 86%. In the stand level validation data, the performance decreased for both the logistic model (kappa = 0.38, OA = 71%) and the SVM (kappa = 0.37, OA = 72%). Thus our approach cannot totally replace the field checks. However, in considering the stands where the logistic model predictions had high reliability, the number of misclassifications reduced drastically. The SVM however, was not as good at recognizing reliable cases.
  • Korhonen, School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: lauri.korhonen@uef.fi (email)
  • Pippuri, School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: inka.pippuri@uef.fi
  • Packalén, School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: petteri.packalen@uef.fi
  • Heikkinen, School of Computing, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: ville.heikkinen@uef.fi
  • Maltamo, School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: matti.maltamo@uef.fi
  • Heikkilä, Finnish Forest Centre, Public Services, Maistraatinportti 4 A, FI-00240 Helsinki, Finland E-mail: juho.heikkila@metsakeskus.fi
article id 902, category Research article
Sakari Tuominen, Reija Haapanen. (2013). Estimation of forest biomass by means of genetic algorithm-based optimization of airborne laser scanning and digital aerial photograph features. Silva Fennica vol. 47 no. 1 article id 902. https://doi.org/10.14214/sf.902
Keywords: forest inventory; airborne laser scanning; biomass modelling
Abstract | Full text in HTML | Full text in PDF | Author Info
Information on forest biomass is required for several purposes, including estimation of forest bioenergy resources and forest carbon stocks. Airborne laser scanning is today considered the most accurate remote sensing method for forest inventory. The three-dimensional nature of laser scanning data enables estimation of the volumes of the tree canopies. The dimensions of the tree canopies show high correlation with the amount of forest biomass. Optical aerial photographs are often used to complement laser data, for improved distinction between tree species. The paper reports on a study testing the estimation of forest biomass variables in two study areas in Southern Finland. The biomass variables were derived on the basis of tree-level field measurements, with biomass models used for pine, spruce, and birch. The sample-plot-level biomass components were derived on the basis of tree-level data and used as reference data for airborne-laser- and aerial‑photograph-based estimation. Results were slightly better for total biomass (RMSE 22.5% and 23.6% for the two study areas) than total volume (RMSE: 23.4% and 26.1%). Species-specific estimation errors were large in general but varied between the study areas, because of differences in their forest structures.
  • Tuominen, Finnish Forest Research Institute, P.O.Box 18, FI-01301 Vantaa, Finland E-mail: sakari.tuominen@metla.fi (email)
  • Haapanen, Finnish Forest Research Institute, P.O.Box 18, FI-01301 Vantaa, Finland E-mail: reija.haapanen@gmail.com
article id 69, category Research article
Tarja Wallenius, Risto Laamanen, Jussi Peuhkurinen, Lauri Mehtätalo, Annika Kangas. (2012). Analysing the agreement between an Airborne Laser Scanning based forest inventory and a control inventory – a case study in the state owned forests in Finland. Silva Fennica vol. 46 no. 1 article id 69. https://doi.org/10.14214/sf.69
Keywords: forest inventory; quality assessment; airborne laser scanning
Abstract | View details | Full text in PDF | Author Info
Airborne laser scanning based forest inventories have recently shown to produce accurate results. However, the accuracy varies according to the test area and used methodology and therefore, an unambiguous and practical quality assessment will be needed as a part of each inventory project. In this study, the accuracy of an ALS inventory was evaluated with a field sampling based control inventory. The agreement between the ALS inventory and the control inventory was analysed with four methods: 1) root mean square error (RMSE) and bias, 2) scatter plots with 95% confidence intervals, 3) Bland-Altman plots and 4) tolerance limits within Bland-Altman plots. Each method has its own special features which have to be taken into account when the agreement is analysed. The pre-defined requirements of the ALS inventory were achieved. A simplified control inventory approach with a slightly narrower focus is proposed to be used in the future. The Bland-Altman plots with the tolerance limits are proposed to be used in quality assessments of operational ALS inventories. Further studies to improve the efficiency of quality assessment are needed.
  • Wallenius, Metsähallitus, P.O. Box 94, FI-01301 Vantaa, Finland E-mail: tarja.wallenius@metsa.fi (email)
  • Laamanen, Metsähallitus, P.O. Box 94, FI-01301 Vantaa, Finland E-mail: rl@nn.fi
  • Peuhkurinen, Oy Arbonaut Ltd, Helsinki, Finland E-mail: jp@nn.fi
  • Mehtätalo, University of Eastern Finland, School of Forest Sciences, Joensuu, Finland E-mail: lm@nn.fi
  • Kangas, University of Helsinki, Department of Forest Sciences, Helsinki, Finland E-mail: ak@nn.fi
article id 156, category Research article
Ilkka Korpela, Hans Ole Ørka, Matti Maltamo, Timo Tokola, Juha Hyyppä. (2010). Tree species classification using airborne LiDAR – effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type. Silva Fennica vol. 44 no. 2 article id 156. https://doi.org/10.14214/sf.156
Keywords: airborne laser scanning; ALS; laser; Optech ALTM3100; Leica ALS50-II; canopy; crown modeling; monoplotting; backscatter amplitude; intensity; discriminant analysis
Abstract | View details | Full text in PDF | Author Info
Tree species identification constitutes a bottleneck in remote sensing-based forest inventory. In passive images the differentiating features overlap and bidirectional reflectance hampers analysis. Airborne LiDAR provides radiometric and geometric information. We examined the single-trees-level response of two LiDAR sensors in over 13 000 forest trees in southern Finland. We focused on the commercially important species. Our aims were to 1) explore the relevant LiDAR features and study their dependencies on stand and tree variables, 2) examine two sensors and their fusion, 3) quantify the gain from intensity normalizations, 4) examine the importance of the size of the training set, and 5) determine the effects of stand age and site fertility. A set of 570 semiurban broad-leaved trees and exotic conifers was analyzed to 6) examine the LiDAR signal in the economically less important species. An accuracy of 88 90% was achieved in the classification of Scots pine, Norway spruce, and birch, using intensity variables. Spruce and birch showed the highest levels of confusion. Downsizing the training set from 30% to 2.5% of all trees had only a marginal effect on the performance of classifiers. The intensity features were dependent on the absolute and relative sizes of trees, especially for birch. The results suggest that leaf size, orientation, and foliage density affect the intensity, which is thus not affected by reflectance only. Some of the ecologically important species in Finland may be separable, since they gave rise to high intensity values. Comparison of the sensors implies that performance of the intensity data for species classification varies between sensors for reasons that remained uncertain. Both range and gain receiver normalization improved species classification. Weighting of the intensity values improved the fusion of two LiDAR datasets.
  • Korpela, University of Helsinki, Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: ilkka.korpela@helsinki.fi (email)
  • Ørka, Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, P.O.Box 5003, NO-1432 Ås, Norway E-mail: hoo@nn.no
  • Maltamo, University of Eastern Finland, School of Forest Science, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: mm@nn.fi
  • Tokola, University of Eastern Finland, School of Forest Science, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: tt@nn.fi
  • Hyyppä, Finnish Geodetic Institute, Department of Photogrammetry and Remote Sensing, P.O.Box 15, FI-02431 Masala, Finland E-mail: jh@nn.fi
article id 164, category Research article
Aki Suvanto, Matti Maltamo. (2010). Using mixed estimation for combining airborne laser scanning data in two different forest areas. Silva Fennica vol. 44 no. 1 article id 164. https://doi.org/10.14214/sf.164
Keywords: airborne laser scanning; area-based method; mixed estimation; regression models
Abstract | View details | Full text in PDF | Author Info
Airborne laser scanning (ALS) data have become the most accurate remote sensing technology for forest inventories. When planning new inventories the costs of fieldwork could be reduced if datasets of old inventory areas are effectively reused in the new area. The aim of this study was to apply mixed estimation using a combination of existing and new field datasets in area-based approach. Additionally, combining datasets with mixed estimation was compared with constructing new local models with smaller datasets. The two forest study areas were in Juuka and Matalansalo, which are located about 120 km apart in eastern Finland. ALS-based regression models were constructed using datasets of Matalansalo (472 reference plots) and Juuka (10–212 reference plots). Models were developed for the basal area median tree diameter and height, mean tree height, stem number, basal area and volume. The work was based on a simulation approach which involved five methods for approximating the regression coefficients. The first method merged the datasets using ordinary least squares (OLS) regression models, whereas the second and third methods combined datasets using mixed estimation on different weighting principles, and the final two estimated local models with predetermined and new independent variables. The results indicate that mixed estimation can improve the accuracy of derived stand variables compared with basic OLS models. Additionally, a sample of 40–50 plots was enough to build local models for basal area and volume and produce at least the equal accuracy of results than any other methods in this study.
  • Suvanto, Blom Kartta Oy, Teollisuuskatu 18, FI-80100 Joensuu, Finland E-mail: aki.suvanto@blomasa.com (email)
  • Maltamo, University of Eastern Finland, School of Forest Sciences, P.O. Box, FI-80101, Joensuu, Finland E-mail: mm@nn.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles