Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Endre H. Hansen

Category : Research article

article id 10244, category Research article
Hans Ole Ørka, Endre H. Hansen, Michele Dalponte, Terje Gobakken, Erik Næsset. (2021). Large-area inventory of species composition using airborne laser scanning and hyperspectral data. Silva Fennica vol. 55 no. 4 article id 10244. https://doi.org/10.14214/sf.10244
Keywords: airborne laser scanning; Dirichlet regression; hyperspectral; species proportions; species-specific forest inventory
Highlights: A methodology for using hyperspectral data in the area-based approach is presented; Hyperspectral data produced satisfactory results for species composition in 90% of the cases; Parametric Dirichlet regression is an applicable method to predicting species proportions; Normalization and a tree-based selection of pixels provided the overall best results; Both visible to near-infrared and shortwave-infrared sensors gave acceptable results.
Abstract | Full text in HTML | Full text in PDF | Author Info

Tree species composition is an essential attribute in stand-level forest management inventories and remotely sensed data might be useful for its estimation. Previous studies on this topic have had several operational drawbacks, e.g., performance studied at a small scale and at a single tree-level with large fieldwork costs. The current study presents the results from a large-area inventory providing species composition following an operational area-based approach. The study utilizes a combination of airborne laser scanning and hyperspectral data and 97 field sample plots of 250 m2 collected over 350 km2 of productive forest in Norway. The results show that, with the availability of hyperspectral data, species-specific volume proportions can be provided in operational forest management inventories with acceptable results in 90% of the cases at the plot level. Dominant species were classified with an overall accuracy of 91% and a kappa-value of 0.73. Species-specific volumes were estimated with relative root mean square differences of 34%, 87%, and 102% for Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and deciduous species, respectively. A novel tree-based approach for selecting pixels improved the results compared to a traditional approach based on the normalized difference vegetation index.

  • Ørka, Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway ORCID https://orcid.org/0000-0002-7492-8608 E-mail: hans-ole.orka@nmbu.no (email)
  • Hansen, Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway; Norwegian Forest Extension Institute, Honnevegen 60, NO-2836 Biri, Norway ORCID https://orcid.org/0000-0001-5174-4497 E-mail: eh@skogkurs.no
  • Dalponte, Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione E. Mach, Via E. Mach 1, 38010 San Michele all’Adige, TN, Italy ORCID https://orcid.org/0000-0001-9850-8985 E-mail: michele.dalponte@fmach.it
  • Gobakken, Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway ORCID https://orcid.org/0000-0001-5534-049X E-mail: terje.gobakken@nmbu.no
  • Næsset, Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway E-mail: erik.naesset@nmbu.no

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles