The aim of the study was to determine which kinds of insects had infected the Norway spruce (Picea abies (L.) H. Karst.) in different stands killed by flooding caused by beavers (Castor canadensis Kuhl), and if there was any danger that they would subsequently cause damage in the surrounding forests. The effect of tree diameter and certain stand characteristics on the fauna of dead trees are discussed. The occurrence of different insect combinations and qualifications for their coexistence were studied.
Pityogenes chalcographus L., Trypodendron lineatum O., Hylurgops palliatus Gyll. and Dryocetes autographus Ratz. occurred most abundantly. 20 phloem or wood boring species were observed in 5 regular succession types. Secondary species occurred in a virgin stand while Ips typographus L. was found at the edge of a felling area. Owing to the flooding, species preferring moist conditions were abundant. In this case damages had not spread to the surrounding forests which, however, might be possible under certain conditions.
The PDF includes a summary in English.
Distribution of European white elm (Ulmus laevis Pallas) is on its northernmost border in Pyhäjärvi and Kokemäenjoki area. This survey describes distribution of European white elm in the flooded shores of the central lake of Pyhäjärvi and Kokemäenjoki river water system.
Both Ulmus laevis and U. montana (now U. Glabra Hudson) can be found in the area, but most of the elms qrowing in thea area are U. laevis. U. laevis occurs around the lake in two separate areas, almost entirely in flooded shores of the lake. Regeneration of elm from seeds was limited on a narrow belt on the higher part of the flooded shore. Consequently, U. laevis can be found as zones around the lake, created by the changes in water level of the lake. The trees are judged to be native for the area.
The article includes an abstract in German.
Canopy gap is the driving force of forest succession. Due to the uncontrollability, however, the influences of natural disturbances on gap formation and gap distribution pattern have been rarely understood in temperate secondary forest ecosystems. We monitored the gap formation and gap distribution pattern using high-resolution remote sensing images before and after two disturbances (wind/snowstorm in 2003 and flood in 2013). The results showed that after wind/snowstorm, the gap nearest neighbor index (GNNI) decreased, the vacant land area did not obviously change while the gap fraction and gaps density (especially medium size) increased. After the flood, GNNI decreased, the number of small gaps increased but larger gaps were in many cases extended to vacant land areas leading to a smaller total number of medium and large gaps but considerable increase in vacant land area. We also found that the gap densities increased with slope and altitude for wind/snowstorm-formed gaps, but they increased with increasing slope and decreasing altitude for flood-formed gaps. These results indicated that gaps were aggregated in steep slope and high altitude areas after wind/snowstorm, but in steep slope and low altitude areas after the flood. Medium gaps were mainly created by the wind/snowstorm due to the individual-level death of dominant tree with the continuous fall of surrounding trees. While, vacant lands were obviously created during the flood because of integral sweeping. Besides, smaller trees were easily damaged by runoff of flood, which induced small gaps. In summary, forest managers may pay more attention to use gaps to accelerate forest succession after wind/snowstorms and to restore vegetation in vacant lands after floods.