Growth data were collected from 40 European aspen (Populus tremula L.) stands growing on eight localities in Sweden. The stands ranged in latitude from 56 to 66°N. The mean age of the stands was 32 years (range, 12–63), the mean stand density 1978 stems ha-1 (range, 300–6,000), and the mean diameter at breast height (on bark) 17 cm (range, 8–34).
Site index curves were constructed for total age. Curves for H40 (dominant height at 40 years total age) were made for total Sweden. Curves fitted for H40 total age have another shape than curves presented by other Nordic studies. The curves from the present study have slower growth for young aspens than curves from Norwegian and Finnish conditions. For 50–70-year-old aspen stands, curves from the present study indicate taller heights than from Nordic studies.
Classified soil types from the stands were grouped into three groups: sandy till (17), light clay (15) and medium clay till (4). As there was only one stand growing in the fine sand group and one stand in the heavy clay till group and two stands in the silty till group, these stands were not presented with growth curves. There were no statistically significant differences in site index between the three soil type groups. Some recommendations for management of aspen stand are given. Damages caused by moose, fungi and other injuries are discussed as a problem for height yield production and a good timber quality.
There are great impact forces in mechanized harvesting and wood yard in the mills which can cause breaks in timber. The impact strength of timber in green condition was tested in temperatures of +18°C and -18°C using sawn pieces (20 x 20 x 300 mm) of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) H. Karst.), birch (Betula pendula Roth and B. pubescens Ehrh.), grey alder (Alnus incana L.) and aspen (Populus tremula L.). In addition, unbarked naturally round sticks (length 300 mm, diameter 15 and 35 mm) of the same species were tested.
The impact strength of round sticks was 1.5–4.4 times as great as that of sawn pieces. The reasons are possibly the avoidance of cell breaks at the surface as well as growth stresses. The frozen samples were clearly weaker than the unfrozen ones. As a rule, the impact bending strength increased with increased density of the species. However, the correlation varied greatly between species. If density was kept constant, an increase in the growth ring width decreased the impact strength. The reason may lie in the fracture mechanism.
The PDF includes a summary in English.
The growth response of aspen (Populus tremula L.) to fertilization was studied in an experiment laid out in a naturally regenerated 35-year old stand on a previously burned-over land. The site was rather fertile. One-tree plot method was used. Applications of nitrogen (150 kg/ha as ammonium nitrate with lime), phosphorus (35 kg/ha as superphosphate), and potassium (66 kg/ha as potassium chloride) separately and in all possible combinations were used; the test included 11 replications. The growth reaction was measured as basal area growth excluding bark during 5 years. The factorial effects were computed using Yates method.
Potassium did not have any effect on basal growth of the trees. The response to phosphorus was also rather small. On the other hand, nitrogen appeared to have increased the basal area growth. The growth increase obtained with nitrogen alone was greater than when it was applied together with phosphorus and/or potassium.
The PDF includes a summary in English.
In a locality in Southern Finland where the white-backed woodpecker, Dendrocopos leucotos (Bechst.), was previously breeding was found many conical borings excavated during the winter in young aspens (Populus tremula L.) on average 8.1 cm in diameter. Full-grown larvae of Saperda carcharias (L.) (Coleoptera, Cerambycidae) hibernated in pupal chambers constructed about 0.5 m above ground level. Below this chamber the larva has usually prepared an exit hole. After the larva has blocked itself in the pupating chamber it is easy to prey for the woodpecker during the whole winter.
There were usually 1–5 conical borings in the same trunk. The number of these borings did not correspond with the amounts of larvae eaten, since the woodpecker often made these borings in places from which it could not obtain a prey. The woodpeckers stopped excavating in those cases when the larvae in the galleries were dead. The exit holes and the conical borings occluded within a few years. The galleries within the tree will not heal and several years later a new larva may utilize them. In the wintering habitats of the white-backed woodpecker the availability of food could be improved by increasing the amount of S. sarcharias larvae. This is easily done by encouraging young aspens.
The PDF includes a summary in Finnish.
The aim of this study was to establish from the literature the purposes and for which aspen (Populus tremula L.) and related poplar species are used and can be used. According to the literature, numerous Populus species can be utilized in the industry with success instead of light softwood species in addition to them. The main emphasis is in the growing of large-sized timber, and there is no clear trend to changing to the short-rotation forestry of poplar. However, the utilization of the good sprouting properties of Populus species will probably increase as this regeneration method is cheap.
The PDF includes a summary in English.
The first Finnish paper on aspen (Populus tremula L.) was published in 1759 in Åbo (Turku). After this dissertation, numerous scientific and other articles and reports have been published. In this bibliography about 340 papers are listed. Most of the papers deal only with aspen or other species of the genus Populus. Besides these even those articles have been included which deal with other problems but contain some information on the features of poplars.
The titles are listed without any translation or classification. If an article has a summary, it is shown in the title.
The PDF includes a summary in English.
The applicability of MCPA- and 2,4,5-T-herbicides for use in the management of sapling stands and the possibilities of carrying out foliar spraying at an earlier date than at precent with smaller doses of the active ingredient were examined in this study. The results were obtained from foliage spraying experiments carried out in Central Finland in summer 1976. MCPA and 2,4,5-T were as effective as each other against deciduous tree species. However, MCPA was slightly more effective against aspen (Populus tremula L.) than 2,4,5-T. The spraying date had no effect on the mortality rate of aspen or birch (Betula pendula Roth and B. pubescens Ehrh.) There were only very slight differences between the results for different dosage levels. The damage caused to Scots pine (Pinus sylvestris L.) was very slight. The temperature conditions prevailing during spraying affected spraying effectiveness in such way that the mortality rate decreased during cold period.
The PDF includes a summary in English.
At three Finnish match factories 1,629 aspen logs were measured (see Kärkkäinen and Salmi 1978). When the estimation was based on the condition of the butt cross section of a log, less than half of the logs were sound without any discoloration or decay. Based on the condition of the top cross-section, the corresponding figure was a little higher than 50%. The logs with decay were bigger than those without it. There were relatively more butt logs among the logs with decay than among the totally sound logs.
The PDF includes a summary in Finnish.
The aim of the study was to determine the extent to which the cross section of birch (Betula sp.) and aspen (Populus tremula L.) logs differ from a circle and to test some simple methods for measuring the cross-sectional area which can be used, for instance, for determining the volume of the logs. The material consisted of 420 debarked birch disks and 240 aspen disks which were representative of the logs arriving at two factories.
The convex deficit values for the material were very small, the cross-sectional area error being in general less than 1%. On the other hand, the other parameters deviated from the circular form to quite a large degree. It was also evident that the radii measured from the piths to the surface of the wood varied considerably more in the same disk, as regards length, than the diameters measured in different directions.
It was evident that the shape of the average cross-sectional area was not in general elliptical. It thus appears that any method for measuring the cross-sectional area which is based on elliptical formula is not suitable. The method which gave the best result was that in which the cross-sectional area was taken as the average of the area of the circle calculated from the smallest diameter and that calculated from the diameter passing at right angles to it. This method also appeared to be the best for disks which deviated to quite a large degree from the circular form. The suitability of this method is increased by the fact that the relative error is only slightly dependent on the size of the disk.
The PDF includes a summary in English.
The effect of spacing on the first-year yield and height increment of Alnus incana (L.) Moench, Populus tremula L. x Populus tremuloides Michx. (Populus x wettsteinii), Salix ’Aquatica Gigantea’, and Salix phylicifolia L. was studied at the Arctic Circle Agricultural Experimental Station in Northern Finland. S. ’Aquatica Gigantea’ gave yields which were twice as high as those of the other species in the study. The highest yields were of the order of 60 tons per hectare (fresh yield including foliage). The annual height growth in S. ’Aquatica Gigantea’ was about 100 cm, in the others about 30–50 cm. S. ’Aquatica Gigantea’ had a maximal height growth when the distance between the seedlings was 25 cm.
The PDF includes a summary in English.
Hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) has been grown in Finland for about 20 years, and the area of the stands is currently about 400 ha. Growing is planned to be greatly expanded to grow raw material for match industry. The aim of this investigation was to study susceptibility of hybrid aspen to insect damages. Insect damages in hybrid aspen, growing in Southern Finland, were examined in 15 stands in 1972. Saperda species were observed to be the most numerous and harmful insect species. Saperda carcharias L. occurred in 26% and Saperda populnea L. in 36% off trees inspected. Mass occurrence of Chionaspis salicis L. was observed in some sample areas.
A ten-year old stand of hybrid aspen (Populus tremula x Populus tremuloides), growing in Southern Finland on about 1.5 ha of Oxalis-Myrtillus type (OMT) soil and affected by crown blight, was examined in 1971. The study revealed that almost all trees, both those removed by thinning and the remaining growing stock, were decayed. A number of bacteria, Fungi imperfecti species and ascomycetous fungi were isolated from the discoloured heartwood of the affected trees. No fungus of the Bacidiomycetes was found in the discoloured wood material.
The PDF includes a summary in English.
Aspen (Populus tremula L.) is a common tree in Finland, and has been used, for instance, in matchstick industry. However, there has been little studies on its distribution and properties. In this study, 142 sample trees in different forest site types in Valtimo and Onkamo in Eastern Finland were measured in detail in 1935.
According to the results, during the first 10 years aspens height growth is fastest of the Finnish tree species surpassing, for instance, Scots pine (Pinus sylvestris L.) and birch (Betula sp.) . The diameter growth is similar to Scots pine up to the age of 50 years, after which the growth of aspen exceeds Scots pine. Branchless portion of the stem compared to the height of the tree increases until it reaches about 50% of the height of the tree. In poorer sites aspen is prone to decay.
Aspen regenerates easily both by root shoots and seeds. If root shoots are left to grow, the mother tree should be free of decay. In general, seedlings are of better quality. Good quality aspen stands require thinning and a rich forest type. If an old aspen stand has decay, the trees should be ring-barked and the site regenerated with a new tree species.
The article includes an abstract in German.
Compression wood of the tree species studied in this investigation, Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and common juniper (Juniperus communis L.), was found to be characterized in its cross section by the thick walls and rounded shape of its tracheids and the profuse occurence of spaces. Tension wood of aspen (Populus tremula L.) and alder (Alnus incana (L.) Moench) was found in microscopic examination to be characterized by the gelatinous appearance of the wood fibres, by its small cell cavities and by the thickness and buckling of the inner layer of the cecondary wall. Tracheids of the compression wood were found to have shorter length than normal on an average, while the tension wood fibres were found to be longer.
The microchemical studies suggest a higher than normal lignin content in compression wood and lower than normal lignin content in tension wood, as compared to normal wood. The reverse would be true for the cellulose contents. Volume weight of absolute dry reaction wood was distinctly higher than that of normal wood. The longitudinal shrinkage of reaction wood, particularly of compression wood, is several times that of normal wood. Transversal shrinkage of compression wood is much less than normal wood. Swelling tests revealed pushing effect of compression wood on elongation and pulling effect on tension wood on constraction. Volume shrinkage of compression wood is less than that of normal wood, in contrast to tension wood. The strength of compression wood in absolutely dry condition was nearly same as that of normal wood.
The PDF includes a summary in English.
Hybrid aspen (Populus tremula L. × P. tremuloides Michx.) is known with outstanding growth rate and some favourable wood characteristics, but models for stand management have not yet been prepared in northern Europe. This study introduces methods and models to predict tree dimensions, diameter at breast height (dbh) and tree height for a hybrid aspen plantation using data from repeatedly measured permanent sample plots established in clonal plantations in southern Finland. Dbh distributions using parameter recovery method for the Weibull function was used with Näslund’s height curve to model tree heights. According to the goodness-of-fit statistics of Kolmogorov-Smirnov and the Error Index, the arithmetic mean diameter (D) and basal area-weighted mean diameter (DG) provided more stable parameter recovery for the Weibull distribution than the median diameter (DM) and basal area-weighted median diameter (DGM), while DG showed the best overall fit. Thus, Näslund’s height curve was modelled using DG with Lorey’s height (HG), age, basal area (BA), and tree dbh (Model 1). Also, Model 2 was tested using all predictors of Model 1 with the number of trees per ha (TPH). All predictors were shown to be significant in both Models, showing slightly different behaviour. Model 1 was sensitive to the mean characteristics, DG and HG, while Model 2 was sensitive to stand density, including both BA and TPH as predictors. Model 1 was considered more reasonable to apply based on our results. Consequently, the parameter recovery method using DG and Näslund’s models were applicable for predicting tree diameter and height.
Current remote sensing methods can provide detailed tree species classification in boreal forests. However, classification studies have so far focused on the dominant tree species, with few studies on less frequent but ecologically important species. We aimed to separate European aspen (Populus tremula L.), a biodiversity-supporting tree species, from the more common species in European boreal forests (Pinus sylvestris L., Picea abies [L.] Karst., Betula spp.). Using multispectral drone images collected on five dates throughout one thermal growing season (May–September), we tested the optimal season for the acquisition of mono-temporal data. These images were collected from a mature, unmanaged forest. After conversion into photogrammetric point clouds, we segmented crowns manually and automatically and classified the species by linear discriminant analysis. The highest overall classification accuracy (95%) for the four species as well as the highest classification accuracy for aspen specifically (user’s accuracy of 97% and a producer’s accuracy of 96%) were obtained at the beginning of the thermal growing season (13 May) by manual segmentation. On 13 May, aspen had no leaves yet, unlike birches. In contrast, the lowest classification accuracy was achieved on 27 September during the autumn senescence period. This is potentially caused by high intraspecific variation in aspen autumn coloration but may also be related to our date of acquisition. Our findings indicate that multispectral drone images collected in spring can be used to locate and classify less frequent tree species highly accurately. The temporal variation in leaf and canopy appearance can alter the detection accuracy considerably.
The occurrence of moose damage was studied using data from three National Forest Inventories (NFIs) accomplished between 1986 and 2008 in Finland. The combined data included a total of 97 390 young stands. The proportion of moose damage increased from 3.6% to 8.6% between the 8th NFI (1986–1994) and the 10th NFI (2004–2008). The majority (75%) of the damage occurred in Scots pine-dominated stands. The proportion of damage was higher in aspen-dominated stands than in stands dominated by any other tree species. The tree species mixture also had a clear effect on the occurrence of damage. Pure Scots pine stands had less damage than mixed Scots pine stands, and moose damage decreased linearly with the increasing proportion of Scots pine. Stands on mineral soil had more frequent moose damage than stands on peatlands. The fertility class of the site had no straightforward effect on the damage frequency. Artificially regenerated stands had more damage than naturally regenerated stands. Accomplished soil preparation measures and the need for thinning or clearing operations increased moose damage. High proportions of moose damage in young stands were found around the country. In the 10th NFI, the largest concentration of damage was found in southwestern Finland. Our study shows the temporal and spatial changes in the occurrence of moose damage and pinpoints some important silvicultural factors affecting the relative risk of young stands over a large geographical area.
The objective of this study was to investigate basic density and its within-stem variation by studying 84 European aspen stems from 28 forest stands in Latvia. The studied forest stands covered all age classes from young stands to matured forests in representative growth conditions of European aspen. The densities of 2722 wood and 1022 bark specimens were measured from the sampled trees. Only the knot-free wood specimens without obvious wood defects were chosen for analyses. A map of basic density summarizing its radial and axial variations was constructed to show species-specific, within-stem variability and the relationships between density and tree and stand variables were examined. Stem wood and bark of the European aspen show different patterns of basic density variation along the tree stem. Wood density increases from pith to bark up to certain dimensions and shows a slight decrease afterwards. The weighted basic density of bark (446 ± 39.6 kg m–3) was higher than stem wood density (393 ± 30.4 kg m–3). Our results suggest that wood and bark density measurements obtained at breast height can be used for reliable estimation of the densities of whole-tree stem components, while tree parameters such as diameter at breast height (DBH), tree height and social status or stand parameters, including number of trees, basal area and age, are weak predictors in this context.