Current issue: 58(5)
There are great impact forces in mechanized harvesting and wood yard in the mills which can cause breaks in timber. The impact strength of timber in green condition was tested in temperatures of +18°C and -18°C using sawn pieces (20 x 20 x 300 mm) of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) H. Karst.), birch (Betula pendula Roth and B. pubescens Ehrh.), grey alder (Alnus incana L.) and aspen (Populus tremula L.). In addition, unbarked naturally round sticks (length 300 mm, diameter 15 and 35 mm) of the same species were tested.
The impact strength of round sticks was 1.5–4.4 times as great as that of sawn pieces. The reasons are possibly the avoidance of cell breaks at the surface as well as growth stresses. The frozen samples were clearly weaker than the unfrozen ones. As a rule, the impact bending strength increased with increased density of the species. However, the correlation varied greatly between species. If density was kept constant, an increase in the growth ring width decreased the impact strength. The reason may lie in the fracture mechanism.
The PDF includes a summary in English.
The effect of spacing on the first-year yield and height increment of Alnus incana (L.) Moench, Populus tremula L. x Populus tremuloides Michx. (Populus x wettsteinii), Salix ’Aquatica Gigantea’, and Salix phylicifolia L. was studied at the Arctic Circle Agricultural Experimental Station in Northern Finland. S. ’Aquatica Gigantea’ gave yields which were twice as high as those of the other species in the study. The highest yields were of the order of 60 tons per hectare (fresh yield including foliage). The annual height growth in S. ’Aquatica Gigantea’ was about 100 cm, in the others about 30–50 cm. S. ’Aquatica Gigantea’ had a maximal height growth when the distance between the seedlings was 25 cm.
The PDF includes a summary in English.