There are great impact forces in mechanized harvesting and wood yard in the mills which can cause breaks in timber. The impact strength of timber in green condition was tested in temperatures of +18°C and -18°C using sawn pieces (20 x 20 x 300 mm) of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) H. Karst.), birch (Betula pendula Roth and B. pubescens Ehrh.), grey alder (Alnus incana L.) and aspen (Populus tremula L.). In addition, unbarked naturally round sticks (length 300 mm, diameter 15 and 35 mm) of the same species were tested.
The impact strength of round sticks was 1.5–4.4 times as great as that of sawn pieces. The reasons are possibly the avoidance of cell breaks at the surface as well as growth stresses. The frozen samples were clearly weaker than the unfrozen ones. As a rule, the impact bending strength increased with increased density of the species. However, the correlation varied greatly between species. If density was kept constant, an increase in the growth ring width decreased the impact strength. The reason may lie in the fracture mechanism.
The PDF includes a summary in English.
The growth response of aspen (Populus tremula L.) to fertilization was studied in an experiment laid out in a naturally regenerated 35-year old stand on a previously burned-over land. The site was rather fertile. One-tree plot method was used. Applications of nitrogen (150 kg/ha as ammonium nitrate with lime), phosphorus (35 kg/ha as superphosphate), and potassium (66 kg/ha as potassium chloride) separately and in all possible combinations were used; the test included 11 replications. The growth reaction was measured as basal area growth excluding bark during 5 years. The factorial effects were computed using Yates method.
Potassium did not have any effect on basal growth of the trees. The response to phosphorus was also rather small. On the other hand, nitrogen appeared to have increased the basal area growth. The growth increase obtained with nitrogen alone was greater than when it was applied together with phosphorus and/or potassium.
The PDF includes a summary in English.
The aim of this study was to establish from the literature the purposes and for which aspen (Populus tremula L.) and related poplar species are used and can be used. According to the literature, numerous Populus species can be utilized in the industry with success instead of light softwood species in addition to them. The main emphasis is in the growing of large-sized timber, and there is no clear trend to changing to the short-rotation forestry of poplar. However, the utilization of the good sprouting properties of Populus species will probably increase as this regeneration method is cheap.
The PDF includes a summary in English.
The first Finnish paper on aspen (Populus tremula L.) was published in 1759 in Åbo (Turku). After this dissertation, numerous scientific and other articles and reports have been published. In this bibliography about 340 papers are listed. Most of the papers deal only with aspen or other species of the genus Populus. Besides these even those articles have been included which deal with other problems but contain some information on the features of poplars.
The titles are listed without any translation or classification. If an article has a summary, it is shown in the title.
The PDF includes a summary in English.
The applicability of MCPA- and 2,4,5-T-herbicides for use in the management of sapling stands and the possibilities of carrying out foliar spraying at an earlier date than at precent with smaller doses of the active ingredient were examined in this study. The results were obtained from foliage spraying experiments carried out in Central Finland in summer 1976. MCPA and 2,4,5-T were as effective as each other against deciduous tree species. However, MCPA was slightly more effective against aspen (Populus tremula L.) than 2,4,5-T. The spraying date had no effect on the mortality rate of aspen or birch (Betula pendula Roth and B. pubescens Ehrh.) There were only very slight differences between the results for different dosage levels. The damage caused to Scots pine (Pinus sylvestris L.) was very slight. The temperature conditions prevailing during spraying affected spraying effectiveness in such way that the mortality rate decreased during cold period.
The PDF includes a summary in English.
At three Finnish match factories 1,629 aspen logs were measured (see Kärkkäinen and Salmi 1978). When the estimation was based on the condition of the butt cross section of a log, less than half of the logs were sound without any discoloration or decay. Based on the condition of the top cross-section, the corresponding figure was a little higher than 50%. The logs with decay were bigger than those without it. There were relatively more butt logs among the logs with decay than among the totally sound logs.
The PDF includes a summary in Finnish.
In this study the area, 8 diameters, and 16 radii were measured of 174 discs representing aspen logs in a mill. The average difference between the largest and smallest diameter was 18 mm, or 7% of the longest diameter. The difference between the largest and smallest radius was 29 mm, or 22% of the longest radius. The diameter was on the average 2.4 mm longer than the two corresponding radii.
The exact area of each disc was measured using a planimeter. In comparison, the area based on the circle formula the diameter being the arithmetic mean of largest and smallest diameters overestimated the area by 1.7%. The results also indicated that the use of random direction in the measurement of diameter overestimated the cross-sectional area on the average by 1.8%.
The study is continuation of the earlier study where the bibliography is presented. As far as the results are comparable, they support each other.
The PDF includes a summary in English.
The aim of the study was to determine the extent to which the cross section of birch (Betula sp.) and aspen (Populus tremula L.) logs differ from a circle and to test some simple methods for measuring the cross-sectional area which can be used, for instance, for determining the volume of the logs. The material consisted of 420 debarked birch disks and 240 aspen disks which were representative of the logs arriving at two factories.
The convex deficit values for the material were very small, the cross-sectional area error being in general less than 1%. On the other hand, the other parameters deviated from the circular form to quite a large degree. It was also evident that the radii measured from the piths to the surface of the wood varied considerably more in the same disk, as regards length, than the diameters measured in different directions.
It was evident that the shape of the average cross-sectional area was not in general elliptical. It thus appears that any method for measuring the cross-sectional area which is based on elliptical formula is not suitable. The method which gave the best result was that in which the cross-sectional area was taken as the average of the area of the circle calculated from the smallest diameter and that calculated from the diameter passing at right angles to it. This method also appeared to be the best for disks which deviated to quite a large degree from the circular form. The suitability of this method is increased by the fact that the relative error is only slightly dependent on the size of the disk.
The PDF includes a summary in English.
The effect of spacing on the first-year yield and height increment of Alnus incana (L.) Moench, Populus tremula L. x Populus tremuloides Michx. (Populus x wettsteinii), Salix ’Aquatica Gigantea’, and Salix phylicifolia L. was studied at the Arctic Circle Agricultural Experimental Station in Northern Finland. S. ’Aquatica Gigantea’ gave yields which were twice as high as those of the other species in the study. The highest yields were of the order of 60 tons per hectare (fresh yield including foliage). The annual height growth in S. ’Aquatica Gigantea’ was about 100 cm, in the others about 30–50 cm. S. ’Aquatica Gigantea’ had a maximal height growth when the distance between the seedlings was 25 cm.
The PDF includes a summary in English.
Hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) has been grown in Finland for about 20 years, and the area of the stands is currently about 400 ha. Growing is planned to be greatly expanded to grow raw material for match industry. The aim of this investigation was to study susceptibility of hybrid aspen to insect damages. Insect damages in hybrid aspen, growing in Southern Finland, were examined in 15 stands in 1972. Saperda species were observed to be the most numerous and harmful insect species. Saperda carcharias L. occurred in 26% and Saperda populnea L. in 36% off trees inspected. Mass occurrence of Chionaspis salicis L. was observed in some sample areas.
A ten-year old stand of hybrid aspen (Populus tremula x Populus tremuloides), growing in Southern Finland on about 1.5 ha of Oxalis-Myrtillus type (OMT) soil and affected by crown blight, was examined in 1971. The study revealed that almost all trees, both those removed by thinning and the remaining growing stock, were decayed. A number of bacteria, Fungi imperfecti species and ascomycetous fungi were isolated from the discoloured heartwood of the affected trees. No fungus of the Bacidiomycetes was found in the discoloured wood material.
The PDF includes a summary in English.
Compression wood of the tree species studied in this investigation, Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and common juniper (Juniperus communis L.), was found to be characterized in its cross section by the thick walls and rounded shape of its tracheids and the profuse occurence of spaces. Tension wood of aspen (Populus tremula L.) and alder (Alnus incana (L.) Moench) was found in microscopic examination to be characterized by the gelatinous appearance of the wood fibres, by its small cell cavities and by the thickness and buckling of the inner layer of the cecondary wall. Tracheids of the compression wood were found to have shorter length than normal on an average, while the tension wood fibres were found to be longer.
The microchemical studies suggest a higher than normal lignin content in compression wood and lower than normal lignin content in tension wood, as compared to normal wood. The reverse would be true for the cellulose contents. Volume weight of absolute dry reaction wood was distinctly higher than that of normal wood. The longitudinal shrinkage of reaction wood, particularly of compression wood, is several times that of normal wood. Transversal shrinkage of compression wood is much less than normal wood. Swelling tests revealed pushing effect of compression wood on elongation and pulling effect on tension wood on constraction. Volume shrinkage of compression wood is less than that of normal wood, in contrast to tension wood. The strength of compression wood in absolutely dry condition was nearly same as that of normal wood.
The PDF includes a summary in English.