Nearly every forest land in Finland has been burnt down by a wildfire at least once during the past 400–500 years. Slash and burn cultivation (1700–1920) was practised on 50–75 percent of Finland's forests, while prescribed burning (1920–1990) has been applied to 2–3 percent of the country's forests. Because of land-use changes and efficient fire prevention and control systems, the occurrence of wildfires in Finland has decreased considerably during the past few decades. Owing to the biodiversity and ecologically favourable influence of fire, the current tendency is to revive the use of controlled fire in forestry in Finland. Prescribed burning is used in forest regeneration and endeavours are being made to revert old conservation forests to the starting point of succession through forest fires.
The main features of the Finnish landscape are a result of preglacial erosion processes and the structural lines of the bedrock. The microstructure of the landscape was created by the Ice Age and its melting processes. Upon this base, human activities have created a palimpsest of cultural landscapes. The article describes the effects of slash-and-burn cultivation, tar production, cattle ranging and some other forest uses to the forest landscape.
The paper is based on a lecture given in the seminar ‘The forest as a Finnish cultural entity’, held in Helsinki in 1986. The PDF includes a summary in English.
The aim of this study was to establish from the literature the purposes and for which aspen (Populus tremula L.) and related poplar species are used and can be used. According to the literature, numerous Populus species can be utilized in the industry with success instead of light softwood species in addition to them. The main emphasis is in the growing of large-sized timber, and there is no clear trend to changing to the short-rotation forestry of poplar. However, the utilization of the good sprouting properties of Populus species will probably increase as this regeneration method is cheap.
The PDF includes a summary in English.
The daily height growth rate of several larch species and progenies (Larix decidua, Larix sibirica, Larix laricina, Larix leptolepis) grown in a plastic greenhouse and in the open was measured. The growth pattern indoors was completely different compared with the normal outdoor growth pattern. The onset of growth took place in the greenhouse much earlier than outdoors and the phase of increasing growth was much shorter, as was expected. However, the phase of maximum growth was unexpectedly long. This fact suggests that there is great potential for using greenhouse cultivation to change the growth pattern of cultivated plants in order to obtain more complete utilization of the potential growing season.
The PDF includes a summary in Finnish.
The aim of the present study was to register the curly birch (Betula pendula f. carelica Sok.) plantations established in Lapland and to determine their location and present condition. The information was obtained by means of interviews and visual observations.
In Lapland, the growing of curly birch started in 1950’s and the early 1960’s. During this period, in the different supervisory areas of Lapland, the National Board of Forestry established curly birch stands totalling approximately 30 ha, including about 34,000 seedlings. The bulk of the plantations have been destroyed by animals. On the other hand, the curly birch experimental stands established by the Finnish Forest Research Institute have thrived. The private sector of Forest Management has been engaged in the production of seedlings on a large scale and, as a result of this, curly birch trees are frequently seen as ornamentals in Rovaniemi and in other localities in Lapland. When taken care of, curly birch thrives in Lapland and produces I-class curly wood.
The PDF includes a summary in English.
The effect of spacing on the first-year yield and height increment of Alnus incana (L.) Moench, Populus tremula L. x Populus tremuloides Michx. (Populus x wettsteinii), Salix ’Aquatica Gigantea’, and Salix phylicifolia L. was studied at the Arctic Circle Agricultural Experimental Station in Northern Finland. S. ’Aquatica Gigantea’ gave yields which were twice as high as those of the other species in the study. The highest yields were of the order of 60 tons per hectare (fresh yield including foliage). The annual height growth in S. ’Aquatica Gigantea’ was about 100 cm, in the others about 30–50 cm. S. ’Aquatica Gigantea’ had a maximal height growth when the distance between the seedlings was 25 cm.
The PDF includes a summary in English.
The purpose of this study was to compare the development of Scots pine (Pinus sylvestris L.) seedlings sown on substrates off milled peat and milled bark. Mille peat, ordinary milled bark, milled inner bark waste, and a mixture of milled peat and milled bark in the ratio of 1:1, were all compared in the plastic greenhouse. In addition, two fertilization applications were used with milled park: ordinary surface fertilization and double surface fertilization. The germination and development were measured twice during the summer.
It is concluded that milled bark seems to be a rather useful substrate for use in plastic greenhouses, as long as its special requirements are taken into consideration. In the first measurement, there were no differences between the treatments, in the second measurements seedlings growing on a mixture of peat and bark were slightly more developed than the others. Growth of the seedlings was slightly better in ordinary milled bark. Double surface fertilization increased disease and mortality compared to ordinary fertilization.
The PDF includes a summary in English.
Foreign tree species have been planted in Finland since 1900s, the most famous being Larix sibirica plantations in Raivola in Karelia, which now belongs to Soviet Union. One of the largest larch plantations of Finland today is situated in Tuomarniemi, in Central Finland. Ten larch stands were established in Tuomarniemi between 1912 and 1937 mainly by planting. The stand established in 1937 was sown. The trees represent five larch species: Larix sibirica Ledeb. (5 stands), Larix gmelinii var. kurilensis (2 stands, current name probably Larix gmelinii var. gmelinii), Larix americana Michx. (1 stand, now Larix laricina), Larix decidua Mill. (1 stand) and Larix occidentalis Nutt. (1 stand). The total area of the larch stands is 82.5 ha. This paper reports the studies made in the plantations in 1958.
In Tuomarniemi larch grows well in many types of soil from Vaccinium type sites to fresh mineral soil sites. The age of the stands varies from 19 to 48, height from 12 to 24 metres and annual growth from 5 to 12 m3/ha. Larix sibirca has the best stem form of the species, followed by L. gmelinii var. kuriliensis. Easiest to split is the straight-grained L. gmelinii var. kuriliensis. L. sibirica is almost as easy to process. The wood of L. decidua, on the other hand, is often spiral-grained and tough. The trees are seldom infected with decay fungi.
The PDF includes a summary in German.
The earliest local records of lack of timber in Finland are from the 1600th century when Finland belonged to Sweden. The causes vary from burning of tar and shifting cultivation to local factories using fuel wood. Best preserved were forests in Lapland and Kainuu in Northern Finland and those parts of Karelia where shifting cultivation was not practiced. Especially harmful was shifting cultivation, because it made it impossible to grow valuable timber. The state did not intervene in the use of forests until it itself began to need more wood. Shipbuilding was the first cause to limit the use of wood, especially need of mast trees of pine and oak. Also the use of timber by private sawmills began to raise general concern in the 16th century. They influenced the decrease of forests in the 1800th century, due to the limited wood procurement areas and selection felling of timber trees. The establishment of sawmills became regulated in 1700th century. Collective forest ownership by the farms was seen at the time one of the reasons to forest devastation. In 1654 the state of Sweden forbade the burning of mast or in timber forests. Mining industry needed much fuel wood, and shifting cultivation was forbidden near the mines in 1734. Regulations and instructions were also on given on use of wood, for instance, in building, in fences, leaf fodder, fuel wood and tar burning.
Despite of many efforts, the government of Sweden could not prevent devastation of forests in Finland. The many wars of the state hindered economic growth, the regulations were sporadic and often difficult to apply, there was little supervision, the understanding of forestry was poor, and the remote Finland was often neglected in Sweden.
The PDF includes a summary in German.The Jokioinen Estate was established in 1562 when king Erik XIV of Sweden granted a large area around Jokioinen in the southwest Finland to Klas Kristersson Horn. The estate had several landlords until it was acquired in 1872 by Jokkis Stock Company, and finally sold to the government in 1918. The forestry of the estate was influenced by complications concerning the ownership of the land. A part of the tenants of the estate had originally been independent and owned their farms, but some farms were so-called family-right-farms, which were inherited from father to son, but the farmer did not own the land. A third type of farmers were ordinary tenants, who were directly dependent on the landlord. Especially ambiguous was the family-right-farmers’ right to harvest timber from the forests. The Finnish government acquired the estate to solve the problems and gave the tenants right to buy their farms.
Until the 18th century most of the farmers in Jokioinen area practiced shifting cultivation. This method of farming influenced strongly the forests, and continued until the increased market price of timber made it unprofitable. The forests were also the source of fuel wood for both the farmers and the landlord. The estate had own saw-mill industry since the 18th century. In 1871 a trained forester was hired for the estate. When the government acquired the estate, it comprised 32,000 hectares of land. The state retained 7,000 hectares of the forests. They were managed by a trained forester and administrated under the Board of Agriculture.
The PDF includes a summary in English.
In Sweden lot of state owned forests or earlier mining districts or districts of ironworks have been afforested during the last decade. The amount of afforested areas sinks from south to north. Afforestation has taken place also in privately owned forests.
The article discusses the common economic questions related to afforestation work and the biological viewpoints related to it. The best cultivation methods are presented for several common forest types, such as herb-rich forest types, moss-grown forests types, swampy forests with heavy raw humus and barren pine forest sites (lichen type).
The volume 34 of Acta Forestalia Fennica is a jubileum publication of professor Aimo Kaarlo Cajander.
The type of the peatland and its classification as forest site (height-over-age-classification) are important information when the drainage potential of a peatland is defined. The gradient and thickness of peat bed are also significant.
The observations for the study have been collected in state owned forests in middle-Finland. The thickness and gradient variations have no clear differences between different types of peatlands. The results show that from the view of drainage for afforestation, the peatlands that are good or suitable for afforestation are flatter and more even that those less suitable. The more suitable peatlands also have thinner peat bed and bigger gradient.
The volume 34 of Acta Forestalia Fennica is a jubileum publication of professor Aimo Kaarlo Cajander.
The distribution and occurrence of plant species, including trees, in the nature show that living and splendor of them is constrained by climatic factors. They have their minimum, optimum and maximum for the temperatures they can survive in. The tree species, at least mostly are divided into different varieties in different areas of the world so that the species are most suitable for the climatic conditions of their site.
The article presents the main climatic zones with their tree species according L. Ilvessalo and they suitability to Finland. More accurate areas of suitable species are also listed.
The referred results show that alongside the climatic conditions, the conditions of soil and relief must be taken into account when using exotic tree species for forestry purposes.
The article is based on the work “Metsänhoidon perusteet I” [The fundamentals of Forest management I] by the author (1919 in Finnish). The different processes of the soil and the vegetation are dependent on the climatic conditions, but also affect each other. The article presents the climatic zones of the earth and their most important characteristics in regard of cultivation of (to respective zone) exotic trees species and agriculture.
Soil of open and forest covered lands have different properties. Forest devastation has negative effect on forest soil, for instance, through leaching of nutrients. There are different views on how forest fire influences chemical properties of the soil. Burning of forests can have both positive and negative consequences.
The article publishes partial results from a study that aimed to find out how shifting cultivation affects the soil, and how it may change natural regeneration and forest growth of the stands. Soil samples were collected from four burnt-over sites. Of the samples, size classes of the soil particles, volatile solids and nutrient contents were determined. According to the results, the burning increased soluble nutrients, but the effect was not long-lasting. However, more sample sites would be needed to give definitive results of the differences.
The article is a review on shifting cultivation, its methods and use in Finland, and its effect on the condition of forests. Shifting cultivation decreases forest reserves not only by burning large amounts of wood. Of the area used for shifting cultivation, 10-50% can be open land. The older age classes of forests are often missing, and range of tree species shift towards deciduous trees. This causes lack of large timber. The shorter the rotation, the less well the most valuable trees survive on the area. One reason is lack of seed trees. Of the coniferous trees, Scots pine (Pinus sylvestris L.) is able to survive in the burnt-over lands better than Norway spruce (Picea abies (L.) H. Karst.), because it can produce seeds at a relatively young age. Betula sp. and especially grey alder (Alnus incana (L.) Moench) regenerate well on burnt-over lands. Also the frequency of good seed years determine which tree species become the dominant species on a burnt-over site.
When shifting cultivation is abandoned, deciduous trees keep their advantage over coniferous trees, because the wood of coniferous trees is used more in the surrounding villages. Pine and spruce spread to the burnt-over areas from the poorer sites that often had remained unburned. In densely populated areas in some counties in Savo in eastern Finland, where shifting cultivation was practiced intensively, Norway spruce became rare. Dominant tree species in the burnt-over areas became birch and pine.
The article is divided in two parts. A German summary is included in a separate PDFThe article considers the relation of shifting cultivation to deforestation and degradation, and hence its impacts in terms of carbon emissions and sequestration potential. There is a need to understand these relationships better in the context of international policy on Reduced Emissions from Deforestation and Forest Degradation (REDD+). The article reviews the way in which shifting cultivation has been incorporated in global and national estimations of carbon emissions, and assembles the available information on shifting cultivation in Tropical Dry Forests (TDF) in Mexico, where it is widely practiced. It then takes the case of two villages, Tonaya and El Temazcal, which lie within the basin of the River Ayuquila in Jalisco, Mexico. Field data for the typical carbon stocks and fluxes associated with shifting cultivation are compared with stocks and fluxes associated with more intensive agricultural production in the same dry tropical forest area to highlight the carbon sequestration dynamics associated with the shortening and potential lengthening of the fallow cycles. The biomass density in the shifting cultivation system observed can reach levels similar to that of old growth forests, with old fallows (>20 years) having higher carbon stocks than old growth forests. Per Mg of maize produced, the biomass-related emissions from shifting cultivation in the traditional 12 year cycle are about three times those from permanent cultivation. We did not, however, take into account the additional emissions from inputs that result from the use of fertilizers and pesticides in the case of permanent agriculture. Shortening of the fallow cycle, which is occurring in the study area as a result of government subsidies, results in higher remaining stocks of carbon and lower emissions at the landscape level.
The Nordic and Baltic countries are in the frontline of replacing fossil fuel with renewables. An important question is how forest management of the productive parts of this region can support a sustainable development of our societies in reaching low or carbon neutral conditions by 2050. This may involve a 70% increased consumption of biomass and waste to meet the goals. The present review concludes that a 50–100% increase of forest growth at the stand scale, relative to today’s common level of forest productivity, is a realistic estimate within a stand rotation (~70 years). Change of tree species, including the use of non-native species, tree breeding, introduction of high-productive systems with the opportunity to use nurse crops, fertilization and afforestation are powerful elements in an implementation and utilization of the potential. The productive forests of the Nordic and Baltic countries cover in total 63 million hectares, which corresponds to an average 51% land cover. The annual growth is 287 million m3 and the annual average harvest is 189 million m3 (65% of the growth). A short-term increase of wood-based bioenergy by utilizing more of the growth is estimated to be between 236 and 416 TWh depending on legislative and operational restrictions. Balanced priorities of forest functions and management aims such as nature conservation, biodiversity, recreation, game management, ground water protection etc. all need consideration. We believe that these aims may be combined at the landscape level in ways that do not conflict with the goals of reaching higher forest productivity and biomass production.