Current issue: 58(5)
Hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) has been grown in Finland for about 20 years, and the area of the stands is currently about 400 ha. Growing is planned to be greatly expanded to grow raw material for match industry. The aim of this investigation was to study susceptibility of hybrid aspen to insect damages. Insect damages in hybrid aspen, growing in Southern Finland, were examined in 15 stands in 1972. Saperda species were observed to be the most numerous and harmful insect species. Saperda carcharias L. occurred in 26% and Saperda populnea L. in 36% off trees inspected. Mass occurrence of Chionaspis salicis L. was observed in some sample areas.
A ten-year old stand of hybrid aspen (Populus tremula x Populus tremuloides), growing in Southern Finland on about 1.5 ha of Oxalis-Myrtillus type (OMT) soil and affected by crown blight, was examined in 1971. The study revealed that almost all trees, both those removed by thinning and the remaining growing stock, were decayed. A number of bacteria, Fungi imperfecti species and ascomycetous fungi were isolated from the discoloured heartwood of the affected trees. No fungus of the Bacidiomycetes was found in the discoloured wood material.
The PDF includes a summary in English.
Hybrid aspen (Populus tremula × P. tremuloides) is one of the fastest growing tree species in Finland. During the mid-1990s, a breeding programme was started with the aim of selecting clones that were superior in producing pulpwood. Hybrid aspen can also be grown as a short-rotation crop for bioenergy. To study clonal variation in wood and bark properties, seven clones were selected from a 12-year-old field trial located in southern Finland. From each clone, five trees were harvested and samples were taken from stem wood, stem bark and branches to determine basic density, effective heating value, moisture and ash content. Vertical within-tree variation in moisture content and basic density was also studied. The differences between clones were significant for almost all studied properties. For all studied properties there was a significant difference between wood and bark. Wood had lower ash content (0.5% vs. 3.9%), basic density (378 kg m–3 vs. 450 kg m–3) and effective heating value (18.26 MJ kg–1 vs. 19.24 MJ kg–1), but higher moisture content (55% vs. 49%) than bark. The values for branches were intermediate. These results suggest that the properties of hybrid aspen important for energy use could be improved by clonal selection. However, selecting clones based on fast growth only may be challenging since it may lead to a decrease in hybrid aspen wood density.
Fast-growing hybrids of Populus L. have an increasing importance as a source of renewable energy and as industrial wood. Nevertheless, the long-term sensitivity of Populus hybrids to weather conditions and hence to possible climatic hazards in Northern Europe have been insufficiently studied, likely due to the limited age of the trees (short rotation). In this study, the climatic sensitivity of ca. 65-year-old hybrid poplars (Populus balsamifera L. × P. laurifolia Ledeb.), growing at two sites in the western part of Latvia, and ca. 55-year-old hybrid aspens (Populus tremuloides Michx. × P. tremula L.), growing in the eastern part of Latvia, have been studied using classical dendrochronological techniques. The high-frequency variation of tree-ring width (TRW) of hybrid poplar from both sites was similar, but it differed from hybrid aspen due to the diverse parental species and geographic location of the stands. Nevertheless, some common tendencies in TRW were observed for both hybrids. Climatic factors influencing TRW were generally similar for both hybrids, but their composition differed. The strength of climate-TRW relationships was similar, but the hybrid poplar was affected by a higher number of climatic factors. Hybrid poplar was sensitive to factors related to water deficit in late summer in the previous and current years. Hybrid aspen was sensitive to conditions in the year of formation of tree-ring. Both hybrids also displayed a reaction to temperature during the dormant period. The observed climate-growth relationships suggest that increasing temperatures might burden the radial growth of the studied hybrids of Populus.