Current issue: 58(3)

Under compilation: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'heating value'

Category : Article

article id 7517, category Article
Juha Nurmi. (1997). Heating values of mature trees. Acta Forestalia Fennica no. 256 article id 7517. https://doi.org/10.14214/aff.7517
Keywords: biomass; conifers; tree species; lignin; broadleaved trees; heating value; logging residue; carbohydrates
Abstract | View details | Full text in PDF | Author Info

The effective heating values of the above and below ground biomass components of mature Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) H. Karst.), downy birch (Betula pubescens Ehrh), silver birch (B. pendula Roth), grey alder (Alnus incana (L.) Moench), black alder (A. glutinosa (L.) Gaertn.) and aspen (Populus tremula L.) were studied. Each sample tree was divided into wood, bark and foliage components. Bomb calorimetry was used to determine the calorimetric heating values.

The species is a significant factor in the heating value of individual tree components. The heating value of the wood proper is highest in conifers. Broadleaved species have a higher heating value of bark than conifers. The species factor diminishes when the weighted heating value of crown, whole stems or stump-root-system are considered. The crown material has a higher heating value per unit weight in comparison with fuelwood from small-sized stems or whole trees. The additional advantages of coniferous crown material are that it is non-industrial biomass resource and is readily available. The variability of both the chemical composition and the heating value is small in any given tree component of any species. However, lignin, carbohydrate and extractive content were found to vary from one part of the tree to another and to correlate with the heating value

  • Nurmi, E-mail: jn@mm.unknown (email)
article id 7682, category Article
Juha Nurmi. (1993). Heating values of the above ground biomass of small-sized trees. Acta Forestalia Fennica no. 236 article id 7682. https://doi.org/10.14214/aff.7682
Keywords: heating value; small-sized trees; whole-tree biomass; wood chemistry
Abstract | View details | Full text in PDF | Author Info

The heating values of wood, inner and outer bark, and foliage components of seven small-size tree species (Pinus sylvestris L., Picea abies (L.) H. Karst., Betula pubescens Erhr., B. pendula Roth, Alnus incana (L.) Moench, A. glutinosa (L.) Gaertn., Populus tremula L.) were studied. Significant differences were found between species within each component. However, the differences between species for weighted stem, crown and whole-tree biomass are very small. The weighted heating value of the crown mass is slightly higher than that of the stem in all species. The heating value of stem, crown and whole-tree material was found to increase with increasing latitude.

The effective heating value of wood correlated best with the lignin content, inner bark with carbohydrate, and outer bark with carbohydrates and the extractives soluble in alkalic solvents. It is suggested that the determination of the heating value might be used as an indicator of the cellulose content of coniferous wood.

The PDF includes a summary in Finnish.

  • Nurmi, E-mail: jn@mm.unknown (email)

Category : Research article

article id 6993, category Research article
Lars Fridh, Lars Eliasson, Dan Bergström. (2018). Precision and accuracy in moisture content determination of wood fuel chips using a handheld electric capacitance moisture meter. Silva Fennica vol. 52 no. 5 article id 6993. https://doi.org/10.14214/sf.6993
Keywords: heating value; biofuels; payment
Highlights: The studied capacitance meter can provide accurate estimates of mean moisture content for chips with M < 50% if a large sample is taken; It should be possible to use the capacitance meter to measure moisture content even for calculating payments depending of the needed accuracy; However a calibration function for each assortment is needed.
Abstract | Full text in HTML | Full text in PDF | Author Info

According to the Swedish Timber Measurement Act, measurements affecting payments for wood fuels to landowners must be accurate and precise. In this regard, moisture content is an important quality parameter for wood chips which influences the net calorific value as received and thus the economic value. As standard practice moisture content is determined with the oven-drying method, which is cumbersome to use for deliveries to facilities without drying-ovens, which in turn necessitates that samples are taken elsewhere for measurement. An alternative solution is to use a portable moisture meter. Our aim was to evaluate the precision of a handheld capacitance moisture meter. Accuracy and precision of a capacitance meter was determined in the lab and a calibration function was made. Thereafter, the calibrated moisture meter was compared with the standard method for moisture content determination of truckloads of chips. The capacitance meter showed a moderate accuracy by underestimating moisture content by 6.0 percentage points (pp), compared to the reference method, at a precision of ±3.8 pp (CI 95%). For chips with M > 50%, both accuracy and precision decreased. Calibration increased the accuracy in the follow up study by 3 pp for chips with M < 50% but could not be made for wetter chips. The oven-drying method and the capacitance meter can provide equally accurate estimates of mean moisture content for chips with M < 50% if a larger sample is taken with the latter. It should be possible to use capacitance meters to measure moisture content even when used to calculate payments depending of the needed accuracy. A calibration function for each assortment is needed.

  • Fridh, Skogforsk, The Forestry Research Institute of Sweden, Uppsala Science Park, 751 83 Uppsala, Sweden; Skogsägarna Mellanskog, Uppsala Science Park, Box 127, 751 04 Uppsala, Sweden ORCID http://orcid.org/0000-0002-4721-1193 E-mail: lars.fridh@mellanskog.se
  • Eliasson, Skogforsk, The Forestry Research Institute of Sweden, Uppsala Science Park, 751 83 Uppsala, Sweden ORCID http://orcid.org/0000-0002-2038-9864 E-mail: lars.eliasson@skogforsk.se (email)
  • Bergström, Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology, S-901 83 Umeå, Sweden E-mail: dan.bergstrom@slu.se
article id 9938, category Research article
Jyrki Hytönen, Egbert Beuker, Anneli Viherä-Aarnio. (2018). Clonal variation in basic density, moisture content and heating value of wood, bark and branches in hybrid aspen. Silva Fennica vol. 52 no. 2 article id 9938. https://doi.org/10.14214/sf.9938
Keywords: moisture content; wood; bark; hybrid aspen; basic density; branches; clonal variation; heating value; ash content
Highlights: Hybrid aspen clones differed in their moisture content, ash content, basic density and heating value; Stem wood had lower ash content, basic density and effective heating value than stem bark; There was significant vertical variation in wood and bark along the stem in moisture content and basic density.
Abstract | Full text in HTML | Full text in PDF | Author Info

Hybrid aspen (Populus tremula × P. tremuloides) is one of the fastest growing tree species in Finland. During the mid-1990s, a breeding programme was started with the aim of selecting clones that were superior in producing pulpwood. Hybrid aspen can also be grown as a short-rotation crop for bioenergy. To study clonal variation in wood and bark properties, seven clones were selected from a 12-year-old field trial located in southern Finland. From each clone, five trees were harvested and samples were taken from stem wood, stem bark and branches to determine basic density, effective heating value, moisture and ash content. Vertical within-tree variation in moisture content and basic density was also studied. The differences between clones were significant for almost all studied properties. For all studied properties there was a significant difference between wood and bark. Wood had lower ash content (0.5% vs. 3.9%), basic density (378 kg m–3 vs. 450 kg m–3) and effective heating value (18.26 MJ kg–1 vs. 19.24 MJ kg–1), but higher moisture content (55% vs. 49%) than bark. The values for branches were intermediate. These results suggest that the properties of hybrid aspen important for energy use could be improved by clonal selection. However, selecting clones based on fast growth only may be challenging since it may lead to a decrease in hybrid aspen wood density.

  • Hytönen, Natural Resources Institute Finland (Luke), Natural resources, Teknologiakatu 7, FI-67100 Kokkola, Finland E-mail: jyrki.hytonen@luke.fi (email)
  • Beuker, Natural Resources Institute Finland (Luke), Production systems, Vipusenkuja 6, FI-57200 Savonlinna, Finland E-mail: egbert.beuker@luke.fi
  • Viherä-Aarnio, Natural Resources Institute Finland (Luke), Production systems, Latokartanonkaari 9, FI-00790 Helsinki, Finland E-mail: anneli.vihera-aarnio@luke.fi
article id 5659, category Research article
Juha Laitila, Anssi Ahtikoski, Jaakko Repola, Johanna Routa. (2017). Pre-feasibility study of supply systems based on artificial drying of delimbed stem forest chips. Silva Fennica vol. 51 no. 4 article id 5659. https://doi.org/10.14214/sf.5659
Keywords: moisture content; heating value; procurement cost; young forests; dry matter loss
Highlights: With artificial drying and quick delivery, avoiding dry material losses of harvested timber, it could be possible to reduce the current costs of the prevailing procurement system based on natural drying of stored timber at roadside landings; The maximum cost for the prospective drying process of fresh chips corresponds to, e.g., organization costs or stumpage price of delimbed stems.
Abstract | Full text in HTML | Full text in PDF | Author Info

This study was aimed at determining the maximum cost level of artificial drying required for cost-efficient operation. This was done using a system analysis approach, in which the harvesting potential and procurement cost of alternative fuel chip production systems were compared at the stand and regional level. The accumulation and procurement cost of chipped delimbed stems from young forests were estimated within a 100 km transport distance from a hypothetical end use facility located in northern Finland. Logging and transportation costs, stumpage prices, tied up capital, dry matter losses and moisture content of harvested timber were considered in the study. Moisture content of artificially dried fuel chips made of fresh timber (55%) was set to 20%, 30% and 40% in the comparisons. Moisture content of fuel chips based on natural drying during storing was 40%. Transporting costs were calculated according to new higher permissible dimensions and weight limits for truck-trailers. The procurement cost calculations indicated that with artificial drying and by avoiding dry material losses of timber, it could be possible to reduce current costs of the prevailing procurement system based on natural drying of timber at roadside landings. The maximum cost level of artificial drying ranged between 1.2–3.2 € MWh–1 depending on the supply chain, moisture content and procurement volume of fuel chips. This cost margin corresponds to, e.g., organization, forwarding and transportation costs or stumpage price of delimbed stems.

  • Laitila, Natural Resources Institute Finland (Luke), Bio-based business and industry, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: juha.laitila@luke.fi (email)
  • Ahtikoski, Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Paavo Havaksen tie 3, FI-90570 Oulu, Finland E-mail: anssi.ahtikoski@luke.fi
  • Repola, Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Eteläranta 55, FI-96300 Rovaniemi, Finland E-mail: jaakko.repola@luke.fi
  • Routa, Natural Resources Institute Finland (Luke), Bio-based business and industry, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: johanna.routa@luke.fi
article id 1280, category Research article
Juha Laitila, Tapio Ranta, Antti Asikainen, Eero Jäppinen, Olli-Jussi Korpinen. (2015). The cost competitiveness of conifer stumps in the procurement of forest chips for fuel in Southern and Northern Finland. Silva Fennica vol. 49 no. 2 article id 1280. https://doi.org/10.14214/sf.1280
Keywords: stumps; quality; delimbed stems; pre-grinding; procurement; heating value
Highlights: Pre-grinding and integrated screening is a way of guaranteeing fuel quality, but, when the stumps’ ash content is six per cent or below, the procurement costs are higher than with grinding of stumps at the plant. Because of high transportation costs, stump harvesting is the most profitable in Southern Finland, where there is greater availability of stumps than in Northern Finland.
Abstract | Full text in HTML | Full text in PDF | Author Info
The aim of this study was to evaluate cost competitiveness, at regional level, of various systems for stump transportation and grinding, and to compare the results to the procurement costs of delimbed stems from early thinnings at the stand and regional level. The accumulation and procurement costs of stumps and delimbed stems were estimated within a 100-kilometer radius from two power plants located in Kouvola and in Kajaani. The analyses were performed as simulated treatments in clear cuts and thinnings of young stands, using existing productivity and cost functions, alternative ash percentages for stump wood, and yield calculations based on the forest industry regeneration felling stand data and the sample plots data of the National Forest Inventory of Finland. The results were expressed as Euros per solid cubic meter (€ m–3) and Euros per megawatt hour (€ MWh–1). The results highlight the need to improve stump fuel quality and increase the heating value. The procurement cost of stumps was about 1 € MWh–1 lower in Kouvola compared to Kajaani, when using conceivable ash content of 6% for stumps ground at the plant, and ash content of 1.5% for stumps pre-ground at the roadside landing. The procurement costs of stumps were, on average, 0.55 € MWh–1 lower compared to delimbed stems in Kouvola, and on average 0.6 € MWh–1 higher in Kajaani. Pre-grinding and integrated screening is a feasible way to guarantee the fuel quality expressed as ash content already at roadside landings, but the procurement costs are higher compared to grinding stumps at the plant, when the ash content of ground stumps is 6% or less.
  • Laitila, Natural Resources Institute Finland (Luke), Bio-based Business and Industry, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: juha.laitila@metla.fi (email)
  • Ranta, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland E-mail: tapio.ranta@lut.fi
  • Asikainen, Natural Resources Institute Finland (Luke), Bio-based Business and Industry, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: antti.asikainen@metla.fi
  • Jäppinen, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland E-mail: eero.jappinen@lut.fi
  • Korpinen, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland E-mail: olli-jussi.korpinen@lut.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles