Forest tree breeding involves manipulation of genetic composition of populations and individuals, and biotechnology focuses on selected individuals. The new techniques cannot replace the conventional breeding techniques but both need effective cooperation of each other. Thus, the distinction between conventional breeding and biotechnology is artificial. The biotechnology methods are new and fast developing and the future with field and progeny testing will show which techniques will be permanently adopted into tree breeding. For instance, the earlier hope of the use of somaclonal variation as a new source of variability and a powerful tool for the breeder seem today quite the opposite. Somaclonal variation constituting a major problem in present-day micropropagation is due to the unpredictable variation. Based on knowledge of today, especially micropropagation via somatic embryos, transgenic trees and the identification of major genes seem to be good candidates to be permanently adopted into tree breeding.
Shoot elongation of Pinus kesiya Royle ex Gordon was studied using 2-year old grafts in a clonal seed orchard of the Pine Improvement Centre, located at the Huey Bong Experimental Station near Chiangmai, Thailand (19° 17’ N, 99° 15’ E, 900 m a.s.l.).
The seed orchard had a completely randomized block design with 30 blocks and 80 single-tree plots (clones) in each block. Eleven clones in four blocks were selected out of the total of 80 grafts (clones). From each graft, three lateral branches at the height of 1.6 m from the ground level were selected. Thus, total of 109 branches were measured. Shoot length of branches was measured between July 3, 1983 and March 11, 1984 at approximately bi-weekly intervals. Method of classical growth analysis were used in describing the shoot growth.
The annual shoot growth pattern of P. kesiya exhibited two consecutive sigmoid growth curves, i.e. it consisted of two flushes of shoot elongation, both formed by free growth. Thus, the pattern of shoot growth resembled the caribaea pattern. However, the annual shoot was composed of summer and winter shoots. These could be distinguished from each other by the reproductive organs, which always occur on winter shoot. The shoot contributed 61% of the total annual shoot length.
There were significant differences in the pattern of shoot elongation between the studied clones, which may reflect differences in the adaptation to different environmental conditions.
The PDF includes an abstract in Finnish.
Hybrid aspen (Populus tremula × P. tremuloides) is one of the fastest growing tree species in Finland. During the mid-1990s, a breeding programme was started with the aim of selecting clones that were superior in producing pulpwood. Hybrid aspen can also be grown as a short-rotation crop for bioenergy. To study clonal variation in wood and bark properties, seven clones were selected from a 12-year-old field trial located in southern Finland. From each clone, five trees were harvested and samples were taken from stem wood, stem bark and branches to determine basic density, effective heating value, moisture and ash content. Vertical within-tree variation in moisture content and basic density was also studied. The differences between clones were significant for almost all studied properties. For all studied properties there was a significant difference between wood and bark. Wood had lower ash content (0.5% vs. 3.9%), basic density (378 kg m–3 vs. 450 kg m–3) and effective heating value (18.26 MJ kg–1 vs. 19.24 MJ kg–1), but higher moisture content (55% vs. 49%) than bark. The values for branches were intermediate. These results suggest that the properties of hybrid aspen important for energy use could be improved by clonal selection. However, selecting clones based on fast growth only may be challenging since it may lead to a decrease in hybrid aspen wood density.