Current issue: 58(4)
Fast-growing hybrids of Populus L. have an increasing importance as a source of renewable energy and as industrial wood. Nevertheless, the long-term sensitivity of Populus hybrids to weather conditions and hence to possible climatic hazards in Northern Europe have been insufficiently studied, likely due to the limited age of the trees (short rotation). In this study, the climatic sensitivity of ca. 65-year-old hybrid poplars (Populus balsamifera L. × P. laurifolia Ledeb.), growing at two sites in the western part of Latvia, and ca. 55-year-old hybrid aspens (Populus tremuloides Michx. × P. tremula L.), growing in the eastern part of Latvia, have been studied using classical dendrochronological techniques. The high-frequency variation of tree-ring width (TRW) of hybrid poplar from both sites was similar, but it differed from hybrid aspen due to the diverse parental species and geographic location of the stands. Nevertheless, some common tendencies in TRW were observed for both hybrids. Climatic factors influencing TRW were generally similar for both hybrids, but their composition differed. The strength of climate-TRW relationships was similar, but the hybrid poplar was affected by a higher number of climatic factors. Hybrid poplar was sensitive to factors related to water deficit in late summer in the previous and current years. Hybrid aspen was sensitive to conditions in the year of formation of tree-ring. Both hybrids also displayed a reaction to temperature during the dormant period. The observed climate-growth relationships suggest that increasing temperatures might burden the radial growth of the studied hybrids of Populus.
Initial fertilisation, when the fertilizer is supplied during the plantation, is applied to improve the competitive ability of the seedlings and hence to increase their growth and productivity; however, fertilization could also alter wood properties and timber quality. In this study, the dimensions and tree-ring parameters – width, proportion of latewood, maximum and mean density, mean earlywood and latewood density – of initially fertilized (by 14, 6 and 11 g of N, P and K per seedling, respectively) Norway spruce (Picea abies Karst.) growing in an experimental plantation in Kalsnava, Latvia (temperate climate region) were assessed. The fertilization significantly increased the dimensions of trees in long-term (ca. 17% increase of stemwood volume). The analysis of tree-ring width suggested that the duration of the effect was ca. 15 years. The maximum and latewood density were higher for the fertilized trees only in a few years. The mean and earlywood density of tree-rings were mainly similar for both treatments. Altogether, considering the one-time application of a limited amount of fertilizer, such treatment had notable and lasting effect on Norway spruce.