Current issue: 58(5)
In a greenhouse experiment that lasted for two years, nitrogenase activity, height growth and biomass production was compared in six clones of alder of which four were clones of Alnus incana and two A. incana x A. glutinos hybrids. In addition, the effect of a fertilizer nitrogen gradient was tested on one of the clones.
Clonal differences in height growth and nitrogenase activity were recorded at the end of the first growing season. The growth rhythm of some of the clones changed markedly during the second growing season but differences in nitrogenase activity between clones levelled out. Nitrogen fertilization suppressed nodulation during the first growing season, and also the following year the nitrogenase activity was significantly higher in alders grown without nitrogen supplement. Height growth and total biomass production was also depressed at rather low nitrogen levels.
The PDF includes a summary in Finnish.
A material consisting of 21 common alder (Alnus glutinosa (L.) Gaertn.) trees from 11 stands was collected. From each stem discs were sawn by 2 m interval. Samples were taken of the discs from various distances from pith. They were macerated and the average fibre length was based on 50 observations.
The fibre length increased significantly from the pith to the disc surface. The increase was approximately similar at various heights of the tree. The tree characteristics had only minor effect. However, near the pith the increase in fibre length was higher in trees with wide growth rings than in other trees. Near the disc surface the growth rate had no effect. In typical pulpwood bolts the average length was 800–950 μm which corresponds well to the data given in the literature.
The PDF includes a summary in English.
The study was carried out in order to find out the changes taking place in germination of seeds in certain tree species as a function of gamma irradiation, the height growth of the seedlings produced and the types of phenotypic mutants possibly found in the generation that had received radiation. The tree species studied were Pinus sylvestris L., Picea abies (L.) H. Karst., Betula verrucosa (Betula pendula Roth), B. Pubescens Ehrh., Alnus glutinosa (L.) Gaertn. and Alnus incana (L.) Moench.
Soaked seeds that had received a rather small dose of radiation germinated usually better than storage-dry seeds, B. pubescens being an exception. The damages observed in germination, height growth and the relative number of mutants were greater the higher the irradiation doses. The LD50 dose (germination, 28 days) was as follows in the case of the different tree species (storage dry/soaked): P. Sylvestris 1,500-2,000/2500-3,000, P. abies 1,000-1,500/4,000-4,500, B. pendula 9,500-10,000/7,000-7,500, B. pubescens >10,000/7,500-8,000 and A. Glutinosa 10,000/8,500-9,000 rad. Mass production of different mutants of deciduous trees for ornamental purposes, for example, appears to be easy using gamma-irradiation. On the other hand, the possibility of increasing tree growth remains open for further study.
The PDF includes a summary in English.
The ash content has been found to correlate with the fertility of peatlands. Relationship between height of 80-year-old stands and ash content of peat in topmost 30 cm layer was examined in Lithuanian conditions. On drained peatlands with ash content of peat from 3% to 8% pine stands increase in height. Ash content of peat being about 7% Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) stands on drained sites are found to be of equal height. Ash content of peat more than 8–9% has no significant effect on growth of pine or spruce stands. Birch (Betula verrucosa (B. Pendula Roth.) and Betula pubescens Erhrh.), stands are less sensitive to ash content of peat compared with other species. Black alder (Alnus glutinosa L. Gaertn.) stands occurred in sites with ash content of peat more than 8–10%. The height of the stands become equal both in drained and undrained sites in the cases where ash content of peat is about 16–18%. Ash (Fraxinus exelsior L.) stands attain high productivity on drained sites with ash content of peat about 20%.
The PDF includes a summary in English.
Peat industry is rapidly expanding in Finland. Consequently, during next decades peat will be removed from thousands of hectares. Because timber production probably is the most rational use of this area after the peat production has ended, some experiments of afforestation of such areas have already been conducted. This article reports results of two experiments which were started in Kihniö, Western Finland, in 1953 and 1964.
In the first experiment fertilization with wood ash proved very effective whereas seeding and planting without fertilization resulted in almost complete failure. In the second experiment, interplanting with grey alder (Alnus glutinosa L. Gaertn.) greatly promoted the growth of Scots pine (Pinus sylvestris L.). The effect of slight fertilization lasted a few years only. The reasons for the remarkable effect of alder need further research. Although alder is known as a nitrogen-fixing plant, its beneficial effect was most clearly seen in the K and P contents of pine needles. Inoculation with mycorrhizal fungi was beneficial but not necessary. Experiments hitherto show that afforestation of bogs after peat removal is possible although some additional measures like fertilization or interplanting with alder may be needed.
The PDF includes a summary in English.