Current issue: 58(5)
Properties of fibres in pulpwood, especially length, width and the thickness of walls in tracheids, are essential for strength properties of pulp and paper. Length and width of tracheids increase from pith to surface in radial direction. Young and small-sized stems have also smaller fibres. Small-sized Pinus sylvestris L. test trees had tracheids that were shorter both in stems and knot wood than those in normal sized trees. However, cell walls in test trees were as thick as in normal sized trees. It seems that especially the L/T -ratio (length/thickness) in small stems is worse than in normal sized pulp wood.
The PDF includes an abstract in English.
A material consisting of 21 common alder (Alnus glutinosa (L.) Gaertn.) trees from 11 stands was collected. From each stem discs were sawn by 2 m interval. Samples were taken of the discs from various distances from pith. They were macerated and the average fibre length was based on 50 observations.
The fibre length increased significantly from the pith to the disc surface. The increase was approximately similar at various heights of the tree. The tree characteristics had only minor effect. However, near the pith the increase in fibre length was higher in trees with wide growth rings than in other trees. Near the disc surface the growth rate had no effect. In typical pulpwood bolts the average length was 800–950 μm which corresponds well to the data given in the literature.
The PDF includes a summary in English.
Material for this study was collected from 26 stands marked for clear cutting in Southern Finland. The volume of decayed Norway spruce (Picea abies (L.) H. Karst.) timber and pulpwood was determined by deducting the volumes of these assortments (as recorded on the measurement certificate) from the volume of the standing trees. To obtain the economic loss, the volume of decayed wood was multiplied by the difference in stumpage prices between spruce timber of pulpwood and pine pulpwood. In the 17 stands of Buyer A the loss in timber volume caused by decay was 5.84% and the loss in stumpage price 2.84 Fmk/m3 (means weighted by volume). The corresponding figures in the 9 stands of Buyer B were 10.87% and 5.50 Fmk/m3, respectively.
At the mean stumpage price level for the felling season 1977-78 the losses in the stands m.f.c. mentioned above were 2.87% per unit price in the stands of Buyer A and 5.75% in the stands of Buyer B.
The PDF includes a summary in English.
In this study the loose volume of 58 piles of pulpwood were measured before and after barking by rotary ring barker. The volume was 2,121 m3. A recommendation is made, based on the results of the study, concerning the barking loss from piled wood: for green Scots pine (Pinus sylvestris L.) pulpwood, 8.8% of the stacked volume; for seasoned pine pulpwood, 6.1% of the stacked volume; and 8.0% for birch (Betula sp.) pulpwood, green and seasoned. The amount of bark left on bolts was small for pine bolts, namely 0.33%, but quite large for birch bolts, 2.84% of the green weight.
The PDF includes a summary in English.
According to the available literature, the times when pulpwood limbing was made by axe and barking by hand tools, barking either had no effect on the pile density (if limbing quality was good) or increased pile density (if limbing was bad). When rotary barking machines are used, the branch stumps remain intact during barking. Therefore, if there are branch stumps in the pulpwood, barking decreases the pile density. Nowadays, when power saw limbing is a common practice in Finland, barking presumably greatly decreases the pile density, due to the fact that in power saw limbing branch stumps are numerous and high. Therefore, the method to estimate the solid volume of a pile of unbarked pulpwood are not applicable to barked pulpwood without modification.
The PDF includes a summary in English.
In this paper the use of butt and top diameters of pulpwood bolts for volume determination is analysed. The study is based on the taper data of Scots pine (Pinus sylvestris L.) stems. According to the results, the use of the mean of butt and top diameters in the volume determination under Finnish condition causes a positive error in small stems. If the stems are so big that the butt portions of the stems can be used as saw logs, the remaining top bolts, used as pulpwood, are estimated to be smaller than they are in reality. Accordingly, there is a negative error.
The PDF includes a summary in English.
In this literature review some error possibilities in the measurement of solid volume of logs and pulpwood are discussed. Although both underestimation and overestimation can occur for various reasons it seems likely that in the stereometric measurement method the real volume is underestimated, at least when Huber’s formula is applied, and the respective middle form factors are too low. Numerous results of empirical investigations are presented in the paper, too.
The PDF includes a summary in English.
The aim of the paper was to analyse, using a computer simulation technique, the moving distance of pulpwood bolts when direct felling of trees is used and the bolts are gathered alongside the strip road. According to the results, the average moving distance of bolts depends in a complicated way on the usable part of the stem and the spacing of strip road. As a rule, the differences between moving distances of two-meter bolts weighted and unweighted by bolt volume of various trees is 0–16% when the strip road spacing is 30 m the reason being the fact that the heaviest butt bolts are often more far away from the strip road than the top bolts.
The PDF includes a summary in English.
The study deals with the variation in the proportion of heartwood in Norway spruce (Picea abies (L.) H. Karst.) and Scots pine (Pinus sylvestris L.) both within and between stems as examined on the basis of literature. Special attention is paid to an application, in which on the basis of the diameter of pulpwood bolts, efforts are made to predict the proportion of heartwood in the total volume of bolts. It is shown that the method, even when based on homogenous material of 564 Norway spruce and Scots pine bolts, easily leads to wrong conclusions concerning the proportion of heartwood.
The PDF includes a summary in English.
A Committee was appointed in 1931 to prepare a program to improve the trade of small timber and to develop Finnish fuels and their production. The low demand for small timber is caused by the reduced export of Egyptian balks, and decreased demand of fuel wood that have been replaced by the imported fuels, like coal. At the same time, the supply of small timber has grown significantly due to increased thinnings, and better transport facilities that have made timber more accessible. Also, decreasing demand of large timber has increased the supply of small timber. The demand of small timber concentrates on Norway spruce (Picea abies (L.) H. Karst.). The sales of small timber are crucial from the silvicultural point of view. Selection felling of large timber in the past has reduced the supply of logs and led to surplus of small timber.
The article discusses the uses of small timber and potential new fields, such as wood sugar as fodder or refining wood as fuel. The use of timber should be promoted especially in the domestic industry. The Committee suggests funding for an additional forestry teaching post in the University of Technology, for forest technology and forest economics research in the Forest Research Institute, for research in wood technics, and for follow-up of forest sugar and wood gas fields.
The PDF includes a summary in English.
The fellings of small timber have been expanded from seasonal to full-year operation in many areas. A time and motion study was conducted on the felling of pulpwood in different times of the year in seven felling sites in the northernmost Finland. The work was payed per one pulpwood bolt. The output of a one-man teams was larger than 2-6-man teams. Teams of even numbers were more effective than teams of uneven numbers. One-man teams were more popular during summer. The output was largest during the summer. In the late summer the results decrease, because barking of trees becomes more difficult. Shortening of daylight hours begin to shorten the workdays in the autumn. In December, the average working days are about 6 hours. Snow and low temperatures make logging and barking more difficult during the winter. The output was lowest in January, despite that work days are 1 ½ hours longer than in December. It is concluded that pulpwood fellings should be avoided from December to March 15. If the fellings are necessary, the wage system should be changed more flexible than at present. The size of cutter’s lots should be adjusted so, that work periods are not too short. Sufficiently big lots save time spent on travelling between the sites and villages.
The PDF includes a summary in German.
A Commission was appointed to examine the significance of pulpwood exports from the political-economic and social point of view. A survey was made of the development of woodworking industry in Finland. The article includes a detailed review on paper industry in Finland and abroad, pulpwood resources in Finland and outlook of the industry. The export of pulpwood was significant in 1925-1927, the most important country being Germany. The commission notes that It would be more profitable to refine the wood into more expensive products. It does, however, not see it necessary to restrict export of pulpwood. If restrictions are considered necessary, prohibition of export is a better way than export duties.
The best way to promote domestic paper industry is to increase the supply of Norway spruce (Picea abies (L.) H. Karst.). Measures are suggested to increase the productivity of the forests through forest improvement. The annual increment of spruce is calculated to cover the consumption in near future, provided the export of pulpwood does not amount to 600,000 m3, and the local demand of pulpwood does not exceed 7.8 million m3 annually. The Commission proposes that state ownership of forests is increased, forest management is intensified, and restrictions of forest industry to acquire forest land are removed.
It suggests also reliefs in taxation and import duties on fields related to transport, and equipment and raw materials needed by the paper industry.
The PDF includes a summary in English.
The annual fellings and sales of pulpwood from the State Forests of Finland comprised 4.0–4.6 million m3 in 1955–1959. In order to improve the accuracy of the methods used in estimating the pulpwood stocks marked for felling, a pilot survey of 18 marked stocks was carried out in 1959. The stock area, average plot volume, variation of the plot volumes, size and shape of the plot and the distribution of the trees by diameter classes as factors affecting the precision have been studied in this paper.
The greater the mean volume of a plot the more homogenous is the structure of the marked stock. The same number of plots gives a better relative precision for the south Finnish marked stock than for the north Finnish ones, which are heterogenous and less valuable. Stocks smaller than 50 ha can often be estimated more advantageously by the strip method or visually than by the plot method. The proper size of plot in Southern Finland is 0.02–0.03 ha. In Northern Finland the plots should be larger due to the heterogenous stocks, about 0.05 ha. The shape can be either circular or rectangular. The former may be more practical and reliable in the field. The minimum number of sample trees is considered to be about 200 per 100 sample plots 0.03 ha in size.
The PDF includes a summary in English.
The study examines the accuracy of volume tables for top measurement of pulpwood boles, and that of top measurement in general in Northern Finland. In this method only top diameter and length of the boles are measured, and the volume is obtained from volume tables. The boles have previously been measured in the middle of the bole, but the method is very time consuming in practice.
The result indicates that the form of both Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) varies greatly. A pulpwood parcel, however, contains both rapidly and gently tapering logs, and the average form differences are much smaller. The difference between the real volume and the volume obtained from the volume tables is generally less than 12% and for more than third of the stock less than 4%.
Pine boles from private forests have been somewhat more and spruce boles less rapidly tapering than boles cut from state forests. The significance of the differences is not clear. Also, the boles in the northern part of the investigation area taper more sharply than those in the southern part.
It is concluded that the accuracy of the top measurement should be improved, but this is only theoretically possible by means of special tables and correction coefficients.
The Acta Forestalia Fennica issue 61 was published in honour of professor Eino Saari’s 60th birthday.
The PDF includes a summary in English.
Due to shortage of large logs, sawmill industry has been forced to buy also smaller logs, which also pulp industry uses as a raw material. Sawmills must be careful in the pricing of the logs, because profitability of sawing of timber depends on the size of the logs. These industries use different measures when they buy timber: pulp industry uses piled measure in meters, while saw logs are measured individually in cubic feet. The aim of the study was to develop sets of figures on technical cubic measure of a saw log and its relation to a piled cubic meter from the same log used as pulp wood. In addition, the effect of form class on the measures was studied.
The relation was assessed for trunks that had good, mediocre or unfavourable form class, which distinction is easy to make for a forest worker buying timber. The relations can be used by a buyer of saw logs or pulpwood who need to compare the prices or when the seller of the wood compares the offers.
The PDF includes a summary in German.
When the volume of the pulpwood was determined from the dimensions of the stack, the practice was to add an agreed percentage to the height of the stack which took account of the sinking of the stack as the wood dried. The stack was piled to the agreed added height, or the percentage was compensated when the stack was delivered to the buyer. The aim of the study was to determine a more accurate percentage to be used in the pulpwood sales.
The dimensions of a stack of Norway spruce (Picea abies (L.) H. Karst) pulpwood and the diameter of each log was measured during the drying. The 223 cm high pile sank by 0.8% to 221 cm, and the stacked cubic meter decreased from 4.46 m3 to 4.42 m3. However, the shrinkage of a solid cubic meter of the wood was 2.8%, markedly more than the sinking of the stack.
The PDF includes a summary in German.
The article is a review on the wood procurement and cost of pulpwood in the Finnish mechanical and chemical pulp industry in 1922‒1926, based on statistics collected from the members of the Central Association of the Finnish Woodworking Industries (now Finnish Forest Industries), and the series Statistics of Industry and Foreign Trade. Wood trade is carried out by three types of sale: standing sales where the buyer of the wood takes care of fellings and transport (55% of the volume), contracts for the delivery of pulpwood (45% of the volume), and fellings in the own forests of the industry. Norway spruce (Picea abies (L.) H. Karst.) was the most important tree species, and was used almost exclusively especially in the mechanical pulp mills. According to the study, the demand of pulpwood increased markedly during the period. The stumpage prices did, however, not increase accordingly until in 1926. It is assumed that also the supply of wood was high after the World War I.
The PDF includes a summary in English.