Current issue: 58(2)

Under compilation: 58(3)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'soil scarification'

Category : Research article

article id 7751, category Research article
Göran Nordlander, Euan G. Mason, Karin Hjelm, Henrik Nordenhem, Claes Hellqvist. (2017). Influence of climate and forest management on damage risk by the pine weevil Hylobius abietis in northern Sweden. Silva Fennica vol. 51 no. 5 article id 7751. https://doi.org/10.14214/sf.7751
Keywords: temperature sum; reforestation; soil scarification; clear-cut age; conifer seedling; damage prediction; warmer climate
Highlights: Analysis of survey data from 292 reforestation areas in northern Sweden show that the probability of pine weevil damage can be predicted with a standard error of 0.12; Three variables are important in the optimal model: proportion of seedlings in mineral soil, age of clear-cut, and temperature sum; Temperature sum in the model can be adjusted to reflect future climate scenarios.
Abstract | Full text in HTML | Full text in PDF | Author Info

The pine weevil Hylobius abietis L. is an economically important pest insect that kills high proportions of conifer seedlings in reforestation areas. It is present in conifer forests all over Europe but weevil abundance and risk for damage varies considerably between areas. This study aimed to obtain a useful model for predicting damage risks by analyzing survey data from 292 regular forest plantations in northern Sweden. A model of pine weevil attack was constructed using various site characteristics, including both climatic factors and factors related to forest management activities. The optimal model was rather imprecise but showed that the risk of pine weevil attack can be predicted approximatively with three principal variables: 1) the proportion of seedlings expected to be planted in mineral soil rather than soil covered with duff and debris, 2) age of clear-cut at the time of planting, and 3) calculated temperature sum at the location. The model was constructed using long-run average temperature sums for epoch 2010, and so effects of climate change can be inferred from the model by adjustment to future epochs. Increased damage risks with a warmer climate are strongly indicated by the model. Effects of a warmer climate on the geographical distribution and abundance of the pine weevil are also discussed. The new tool to better estimate the risk of damage should provide a basis for foresters in their choice of countermeasures against pine weevil damage in northern Europe.

  • Nordlander, Swedish University of Agricultural Sciences (SLU), Department of Ecology, P.O. Box 7044, SE-750 07 Uppsala, Sweden E-mail: Goran.Nordlander@slu.se
  • Mason, University of Canterbury, School of Forestry, Private Bag 4800, Christchurch 8140, New Zealand; Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, SE-230 53 Alnarp, Sweden ORCID http://orcid.org/0000-0001-9024-9106 E-mail: euan.mason@canterbury.ac.nz (email)
  • Hjelm, Skogforsk, The Forest Research Institute of Sweden, Ekebo 2250, SE-268 90 Svalöv, Sweden; Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, SE-230 53 Alnarp, Sweden E-mail: karin.hjelm@skogforsk.se
  • Nordenhem, Swedish University of Agricultural Sciences (SLU), Department of Ecology, P.O. Box 7044, SE-750 07 Uppsala, Sweden E-mail: h.nordenhem@telia.com
  • Hellqvist, Swedish University of Agricultural Sciences (SLU), Department of Ecology, P.O. Box 7044, SE-750 07 Uppsala, Sweden E-mail: Claes.Hellqvist@slu.se

Category : Research note

article id 1661, category Research note
Āris Jansons, Linda Robalte, Roberts Čakšs, Roberts Matisons. (2016). Long-term effect of whole tree biomass harvesting on ground cover vegetation in a dry Scots pine stand. Silva Fennica vol. 50 no. 5 article id 1661. https://doi.org/10.14214/sf.1661
Keywords: Pinus sylvestris; soil disturbance; stand replacement; Latvia; biomass removal; soil scarification
Highlights: After 47 years, whole tree harvesting (WTH) increased richness of ground cover species compared to conventionally managed stands; Higher occurrence of the oligotrophic species after WTH suggested reduction of soil nutrient content, hence formation of different plant community; WTH, apparently, facilitated recovery of species typical for later successional stages.
Abstract | Full text in HTML | Full text in PDF | Author Info

Long-term (47 years) effect of experimental whole tree harvesting (WTH) with a heavy soil scarification on ground cover vegetation was assessed in a dry nutrient-poor Scots pine (Pinus sylvestris L.) stand in Latvia. Neighbouring conventionally managed young (10 years) and mature (119 years) stands of the same type were used for comparison. Higher species richness was observed in the WTH stand compared to conventionally managed young and mature stands (24, 18 and 16 species, respectively), likely due to the profound disturbance. The Shannon diversity index was higher in the young than in the WTH and mature stands (2.36, 1.77 and 1.63, respectively); still, the composition and structure of ground cover vegetation in WTH was more similar to the mature stand. Nevertheless, the occurrence of oligotrophic species in the WTH stand suggested decreased soil nutrient content and potential development of different plant community. Hence, such method might be considered for restoration of oligotrophic stands. Nevertheless, the period of 47 years appeared sufficient for the ground cover vegetation to recover after the WTH.

  • Jansons, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia E-mail: aris.jansons@silava.lv
  • Robalte, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia E-mail: robalte.l@gmail.com (email)
  • Čakšs, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia E-mail: chakijs95@gmail.com
  • Matisons, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia E-mail: roberts.matisons@silava.lv

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles