Shoot losses due to maturation feeding by pine shoot beetles (Tomicus piniperda (L.) and T. minor (Hart.), Col., Scolytidae) and subsequent growth losses were studied in Scots pine (Pinus sylvestris L.) stands growing at different distances from a timber yard, where pine timber was stored during the years 1982–84. In autumn 1985, pine trees were felled at 20, 40, 80, 500 and 1,500 m distance from the timber yard, five trees in each distance class. Trees were analysed for beetle attack, needle biomass and growth. In autumn 1988, increment cores were taken from 20 trees in each distance class.
In 1985, different damage estimates showed that beetle damage was more than 10-fold in the crowns of pine trees growing close to the timber yard as compared to less damaged trees in greater distance. Crude needle biomass estimates indicated that the trees attacked most had lost more than half of the total foliage. Following three years of attack, basal area growth decreased for 2–3 years and recovered during the subsequent 3 years, the total period of loss thus being 5–6 years. The loss in volume growth during 1983–85 was ca. 70, 40, 20 and 10% at 20, 40, 80 and 500 m distance from the beetle source, respectively, compared to the stand at 1,500. Growth losses did not occur until the number of beetle-attacks, ”pegs”, exceeded ca. 200 per tree. The highest observed growth losses occurred in trees with more than 1,000 pegs per tree.
The PDF includes an abstract in Finnish
The pine weevil Hylobius abietis L. is an economically important pest insect that kills high proportions of conifer seedlings in reforestation areas. It is present in conifer forests all over Europe but weevil abundance and risk for damage varies considerably between areas. This study aimed to obtain a useful model for predicting damage risks by analyzing survey data from 292 regular forest plantations in northern Sweden. A model of pine weevil attack was constructed using various site characteristics, including both climatic factors and factors related to forest management activities. The optimal model was rather imprecise but showed that the risk of pine weevil attack can be predicted approximatively with three principal variables: 1) the proportion of seedlings expected to be planted in mineral soil rather than soil covered with duff and debris, 2) age of clear-cut at the time of planting, and 3) calculated temperature sum at the location. The model was constructed using long-run average temperature sums for epoch 2010, and so effects of climate change can be inferred from the model by adjustment to future epochs. Increased damage risks with a warmer climate are strongly indicated by the model. Effects of a warmer climate on the geographical distribution and abundance of the pine weevil are also discussed. The new tool to better estimate the risk of damage should provide a basis for foresters in their choice of countermeasures against pine weevil damage in northern Europe.