Current issue: 58(2)

Under compilation: 58(3)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'needle biomass'

Category : Article

article id 5459, category Article
Pertti Pulkkinen. (1991). Crown form and harvest increment in pendulous Norway spruce. Silva Fennica vol. 25 no. 4 article id 5459. https://doi.org/10.14214/sf.a15617
Keywords: biomass production; allocation; needle biomass; crown; stem; Picea abies f. pendula; branchwood biomass
Abstract | View details | Full text in PDF | Author Info

Crown characteristics and the distribution of three years’ (1986–88) biomass production of 20 pendulous Norway spruce (Picea abies f. pendula (Lawson) Sylvén) trees with heritable narrow crown and 15 normal-growned spruces (Picea abies (L.) H. Karst.) were studied in a 19-year-old mixed stand.

The form of the crown is conical in normal-crowned trees, columnar and narrow in pendulous trees. The partitioning of aboveground biomass to stems during the studied 3-year period was significantly higher in pendulous (0.281) than in normal-crowned trees (0.255) and also the ratio between growth of stemwood and growth of needle biomass during three years was higher in pendulous trees (0.67 g g-1) than in normal-crowned trees (0.52 g g-1). The needle biomass was distributed higher in the crown in pendula than in normal-crowned trees and they had a higher needle biomass/branchwood biomass ratio than normal trees. The difference in harvest increment between the two crown types are mostly due to the significantly lower branchwood biomass values in pendulous than in normal-crowned trees. The higher needle ’efficiency’ in pendulous trees is probably connected with high partitioning of needle biomass to the upper part of the crown in pendulous trees.

The PDF includes an abstract in Finnish.

  • Pulkkinen, E-mail: pp@mm.unknown (email)
article id 5171, category Article
Seppo Kellomäki, Pauline Oker-Blom. (1983). Canopy structure and light climate in a young Scots pine stand. Silva Fennica vol. 17 no. 1 article id 5171. https://doi.org/10.14214/sf.a15086
Keywords: Pinus sylvestris; needles; Scots pine; canopy; needle biomass; crown; needle area; light condition; within-stand light regime
Abstract | View details | Full text in PDF | Author Info

The needle area distribution and crown structure of a young planted Scots pine (Pinus sylvestris L.) stand are described. The crown structure and crown shape showed apparent regularity in crown structure regardless of stand dynamics. Similarly, the shoot structure and individual needle area showed regularity in the number of needles per branch and shoot length unit, and consequent phytoarea density inside the needle cylinder. Also, the shoot area and needle area distributions were found to show a regular distribution of needle biomass throughout the crown, also inside the crown, in the dominant trees. In the suppressed trees the needle biomass was located in the upper crown and on the surface area of the crown. Estimates of the canopy needle area and distributions are given. The results were applied in calculations of the within-stand light regime. The results correlated well with the empirical results.

The PDF includes a summary in Finnish.

  • Kellomäki, E-mail: sk@mm.unknown (email)
  • Oker-Blom, E-mail: po@mm.unknown
article id 5080, category Article
Annikki Mäkelä, Pertti Hari, Seppo Kellomäki. (1980). Eco-physiological studies on young Scots pine stands. III. Silva Fennica vol. 14 no. 3 article id 5080. https://doi.org/10.14214/sf.a15021
Keywords: Pinus sylvestris; biomass; Scots pine; canopy layer; wood formation; needle biomass; photosynthate allocation
Abstract | View details | Full text in PDF | Author Info

The proportions of needle and wood in current-year shoots in crown systems of young Scots pine (Pinus sylvestris L.) trees was studied. The proportion of needles out of the total shoot biomass increased according to the increasing number of the whorl counted from the apex. In the lower part of the crown system the needle biomass of newly-formed shoots was 50–60 fold compared to that of wood and bark biomass. In the upper part of the crown system the same ratio was 1–2. The variation in ratio between needle and wood biomass was whorl-specific and independent of tree class. The magnitude of the ratio was not related to the position of the tree in the stand nor to the prevailing light conditions within the state.

The PDF includes a summary in Finnish.

  • Mäkelä, E-mail: am@mm.unknown (email)
  • Hari, E-mail: ph@mm.unknown
  • Kellomäki, E-mail: sk@mm.unknown
article id 5079, category Article
Seppo Kellomäki, Pertti Hari, Pirkko Ilonen, Markku Kanninen. (1980). Eco-physiological studies on young Scots pine stands. II. Silva Fennica vol. 14 no. 3 article id 5079. https://doi.org/10.14214/sf.a15020
Keywords: Pinus sylvestris; photosynthesis; Scots pine; stand density; needle biomass; crown class; needle distribution
Abstract | View details | Full text in PDF | Author Info

The technique of double normalizing, i.e. normalizing the relative needle biomass and the length of the living crown system, is applied to the modelling of the distribution of needle biomass in the canopy of young Scots pine (Pinus sylvestris L.) stands. The study based on the parameters of β-function shows that at the individual-tree level, the variance in needle distribution was not closely associated with any tree characteristics. A shift in the point of maximum needle biomass upwards unsuppressed trees was, however, evident. This was associated with an increase in the height of the trees. At the stand level, the stand mean height and stand density had an equal and a rather high potential for explaining the variance in the needle distribution. The normalized crowns are utilized in models for determining light extinction in the crown. A special technique for determining the amount of photosynthates available for growth in a particular tree is presented.

The PDF includes a summary in Finnish.

  • Kellomäki, E-mail: sk@mm.unknown (email)
  • Hari, E-mail: ph@mm.unknown
  • Ilonen, E-mail: pi@mm.unknown
  • Kanninen, E-mail: mk@mm.unknown
article id 5078, category Article
Seppo Kellomäki, Pertti Hari. (1980). Eco-physiological studies on young Scots pine stands. I. Tree class as indicator of needle biomass, illumination and photosynthetic capacity of crown system. Silva Fennica vol. 14 no. 3 article id 5078. https://doi.org/10.14214/sf.a15019
Keywords: Pinus sylvestris; Scots pine; canopy; photosynthetic capacity; needle biomass; tree class
Abstract | View details | Full text in PDF | Author Info

The concept of tree class as indicated by dominant, codominant, intermediate and suppressed trees is analysed using empirical material representing 13 younger Scots pine (Pinus sylvestris L.) stands. The relative needle biomass, i.e. the needle biomass related to the maximum needle biomass in the stand, was closely related to the relative height of the tree and independent of the stand characteristics. Furthermore, the relative illumination of the crown system was related to the relative height of the trees as well as the relative photosynthetic capacity and tree-to-tree variation in growth. When calculated per needle biomass unit it appeared that height growth, radial growth, needle growth and other growth parameters were the highest in the suppressed trees. The suppressed trees thus appear to be more efficient in utilizing available resources than other tree classes. The ecologic significance of the results is discussed.

The PDF includes a summary in Finnish.

  • Kellomäki, E-mail: sk@mm.unknown (email)
  • Hari, E-mail: ph@mm.unknown

Category : Research article

article id 432, category Research article
Bo Långström, Claes Hellqvist, Jan Cedervind. (2004). Comparison of methods for estimation of needle losses in Scots pine following defoliation by Bupalus piniaria. Silva Fennica vol. 38 no. 1 article id 432. https://doi.org/10.14214/sf.432
Keywords: Pinus sylvestris; pine looper; undefoliated foliage; needle biomass; CIR-pictures
Abstract | View details | Full text in PDF | Author Info
In 1996, ca. 7000 hectares of pine forests at Hökensås in SW Sweden were defoliated by the pine looper, Bupalus piniara (L.) (Lepidoptera. Geometridae). Following an aerial damage survey using CIR (colour infra red) photography, and estimation of pupal densities in the soil, ca 4000 ha of the most defoliated pine stands were sprayed in early August 1997 with Bacillus thuringiensis var. kurstaki. The control operation was succeessful but probably redundant, as no further defoliation occurred in unsprayed reference areas. In order to assess defoliation levels in different damage classes for later growth loss studies, 47 circular study plots were laid out in pine stands representing different damage and age classes. The remaining foliage was recorded for each tree using the following classes: 0, 10, 30, 50, 70, 90 and 100%. The defoliation levels in 1996 were estimated by disregarding the 1997 needle age class. Thirteen ca. 40-year-old sample trees representing different damage classes were felled, and the remaining foliage of all branches was estimated by needle age class using the above-mentioned scale. One branch in each of the whorls 1996, 1991, 1986 and 1981 was sampled and its needle dry weight was determined. The sample branch data confirmed the field observations that virtually no additional defoliation took place in 1997. The damage classes estimated from the CIR-pictures only agreed with the field damage estimates at the higher end of the damage scale. In contrast, the field estimate correlated well with plot means derived from tree-wise estimates (R2 = 0.93), and with with the calculated needle biomasses per tree (R2 = 0.90). Thus, the field damage classification was supported by the more detailed defoliation estimates, and hence forms a relevant basis for later growth loss studies.
  • Långström, SLU, Dept. of Entomology, P.O.Box 7044, S-750 07 Uppsala, Sweden. Fax +46 18 672 890 E-mail: bo.langstrom@entom.slu.se (email)
  • Hellqvist, SLU, Dept. of Entomology, P.O.Box 7044, S-750 07 Uppsala, Sweden. Fax +46 18 672 890 E-mail: ch@nn.se
  • Cedervind, SLU, Dept. of Entomology, P.O.Box 7044, S-750 07 Uppsala, Sweden. Fax +46 18 672 890 E-mail: jc@nn.se

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles