Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Zdeněk Vacek

Category : Research article

article id 1740, category Research article
Ram P. Sharma, Zdeněk Vacek, Stanislav Vacek. (2017). Modelling tree crown-to-bole diameter ratio for Norway spruce and European beech. Silva Fennica vol. 51 no. 5 article id 1740. https://doi.org/10.14214/sf.1740
Keywords: Picea abies; Fagus sylvatica; dominant height; exponential decay function; mixed effect model; spatially explicit competition index; species proportion; species mixture effect
Highlights: Modelled crown-to-bole diameter ratio (CDBDR) using tree and stand-level predictors, and sample plot random effects; Spatially explicit mixed-effects model described the largest part of CDBDR variation with no significant trend in the residuals; The CDBDR increased with increasing stand development stage and site quality, but decreased with decreasing proportion of the species of interest, and increasing competition.
Abstract | Full text in HTML | Full text in PDF | Author Info

Crown dimensions are correlated to growth of other parts of a tree and often used as predictors in growth models. The crown-to-bole diameter ratio (CDBDR), which is a ratio of maximum crown width to diameter at breast height (DBH), was modelled using data from permanent sample plots located on Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) stands in different parts of the Czech Republic. Among various tree and stand-level measures evaluated, DBH, height to crown base (HCB), dominant height (HDOM), basal area of trees larger in diameter than a subject tree (BAL), basal area proportion of the species of interest (BAPOR), and Hegyi’s competition index (CI) were found to be significant predictors in the CDBDR model. Random effects were included using the mixed-effects modelling to describe sample plot-level variation. For each species, the mixed-effects model described a larger part of the variation of the CDBDR than nonlinear ordinary least squares model with no trend in the residuals. The spatially explicit mixed-effects model showed more attractive fit statistics [conditional R2 ≈ 0.73 (spruce), 0.78 (beech)] than its spatially inexplicit counterpart [conditional R2 ≈ 0.71 (spruce), 0.76 (beech)]. The model showed that CDBDR increased with increasing HDOM – a measure that combines the stand development stage and site quality – but decreased with increasing HCB and competition (increasing BAL and CI), and decreasing proportions of the species of interest (increasing BAPOR). For both species, the spatially explicit mixed-effects model should be a preferred choice for a precise prediction of the CDBDR. The CDBDR model will have various management implications such as determination of spacing, stand basal area, stocking, and planning of appropriate species mixture.

  • Sharma, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521, Praha 6 – Suchdol, Czech Republic E-mail: sharmar@fld.czu.cz (email)
  • Vacek, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521, Praha 6 – Suchdol, Czech Republic E-mail: vacekz@fld.czu.cz
  • Vacek, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521, Praha 6 – Suchdol, Czech Republic E-mail: vacekstanislav@fld.czu.cz
article id 1564, category Research article
Stanislav Vacek, Zdeněk Vacek, Lukáš Bílek, Jaroslav Simon, Jiří Remeš, Iva Hůnová, Jan Král, Tereza Putalová, Miroslav Mikeska. (2016). Structure, regeneration and growth of Scots pine (Pinus sylvestris L.) stands with respect to changing climate and environmental pollution. Silva Fennica vol. 50 no. 4 article id 1564. https://doi.org/10.14214/sf.1564
Keywords: Pinus sylvestris; natural regeneration; climate; stand development; production; air-pollution
Highlights: Pine forest stands showed positive development of stand structural characteristics related to their diversity, number of regeneration individuals and growth characteristics; Tree-ring width was positively correlated with precipitation, while it was negatively correlated with temperature in growing seasons; Mean NOx concentrations showed positive effect on radial growth of pine; Serious defoliation was caused by SO2 concentrations and N deposition in combination with extreme climate events.
Abstract | Full text in HTML | Full text in PDF | Author Info

Changes in the structure and development of managed Scots pine (Pinus sylvestris L.) stands with respect to changing environmental conditions were set for the period 1979–2015. The study was conducted in conditions of natural pinewoods and pine-oak sites on five permanent research plots (0.25 ha) in Eastern Bohemia, Czech Republic (CR). Studied forest stands showed positive development of stand structural characteristics related to their diversity, number of regeneration individuals and growth characteristics. The standing volume of regularly distributed tree layer in 2015 was in the range of 320–434 m3 ha–1, which indicates an increase by 5.9–20.0% over 10 years. Correlation between pine radial increment and the amount of precipitation was generally the strongest one. Positive statistically significant correlation between diameter increment and temperature was demonstrated only for the average March temperature of the current year. Within the CR, study site can be characterised as a medium polluted area both for sulphur and nitrogen, despite this SO2 concentrations and N deposition in combination with extreme climate events caused severe defoliation in pine stands. Conversely, radial growth was positively significantly correlated with mean NOx concentrations. Drought mainly in combination with even medium environmental pollution can further worsen the health status of pine stands in lowland areas of Central Europe. Thus, formulation of silvicultural techniques able to mitigate the impact of these stress factors is needed.

  • Vacek, Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, 165 21 Prague, Czech Republic E-mail: vacekstanislav@fld.czu.cz
  • Vacek, Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, 165 21 Prague, Czech Republic E-mail: vacekz@fld.czu.cz
  • Bílek, Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, 165 21 Prague, Czech Republic E-mail: bilek@fld.czu.cz
  • Simon, Mendel University in Brno, Faculty of Forestry and Wood Technology, Zemědělská 3, 613 00 Brno, Czech Republic E-mail: jaroslav.simon@mendelu.cz
  • Remeš, Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, 165 21 Prague, Czech Republic E-mail: remesj@email.cz (email)
  • Hůnová, Czech Hydrometeorological Institute, Na Šabatce 17 143 06 Prague, Czech Republic E-mail: hunova@chmi.cz
  • Král, Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, 165 21 Prague, Czech Republic E-mail: kraljan@fld.czu.cz
  • Putalová, Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, 165 21 Prague, Czech Republic E-mail: putalova@fld.czu.cz
  • Mikeska, University of Hradec Králové, Faculty of Science, Rokitanského 62, 500 03 Hradec Králové, Czech Republic E-mail: Mikeska.Miroslav@uhul.cz

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles