Technological development gives forest companies opportunities to maintain competitiveness in the highly cost-sensitive market for forest products. However, no previous studies have examined the technological development decisions made by forest companies or the support tools used when making them. We therefore aimed to describe and analyze 1) the processes used when making such decisions, 2) the associated decision situations, and 3) the use of and need for decision support tools in these processes, with a harwarder concept as case. Semi-structured interviews were conducted with respondents from six forestry organizations. Two theoretical frameworks were used to analyze the interviews, one for unstructured decision processes and one for decision situations. The respondents’ descriptions of their decision processes were consistent with those observed in other industries, and it was shown that decision-making could potentially be improved by investing more resources into diagnosing the problem at hand. The main objective in decision-making was to maximize economic criteria while satisfying threshold requirements relating to criteria such as operator well-being, soil rutting, and wood value. When facing large uncertainties, interviewees preferred to gather data through operational trials and/or scientific studies. If confronted with large uncertainties that could not be reduced, they proceeded with development only if the potential gains exceeded the estimated uncertainties, and implemented innovations in a stepwise manner. These results indicate a need for greater use of existing decision-support tools such as problem-structuring methods to enable more precise diagnoses, simulations to better understand new innovations, and optimization to better evaluate their theoretical large-scale potential.
Expertise in the cost-efficient utilization and treatment of brushwood on forest roadside sites is limited. In the present study, the productivity of brushwood clearing and harvesting on forest roadside sites was defined by creating time-consumption models or parameters for the aforementioned working methods. Compiled time consumption models and parameters for the brushwood clearing and harvesting can be used as a basis for evaluating alternative management practices and to determine when brushwood biomass should be harvested and when it should be left to decay. The harvesting of brushwood was based on the harwarder system and the clearing of brushwood was done with a spiral cutter, which is a novel accessory for cutting roadside vegetation. Based on the study results, the average volume of harvested brushwood and forwarding distance are the key elements that have an effect on harvesting productivity with harwarders. Correspondingly, stump diameter has a strong impact on the clearing productivity of brushwood. The plot-wise productivity of the spiral cutter in brushwood clearings varied in the range of 0.19–0.61 ha per PMh. An increase in stump diameter slowed down the clearing productivity of the spiral cutter and there was a clear step downward in clearing productivity as the average diameter increased from 30 mm to 40 mm. The machinery under study operated well and there were no interruptions due to machine breakdowns.