Current issue: 58(4)
Growth, crown structure, flowering and seed production of silver birch (Betula pendula Roth) seedlings, grafts and micropropagated plants was compared during four years in a polythene greenhouse experiment. The growth of the seedlings was clearly the most vigorous and that of the grafts the weakest, the micropropagated plants being intermediate. The seedlings had the highest and the grafts the lowest number of branches before cutting the tops of the plants, but the differences between the material types were no more significant after cutting the tops. The grafts had significantly shorter and thinner branches than the seedlings and the micropropagated plants, whereas the differences in branch length and branch thickness between the latter two groups were not significant. The grafts started flowering at the age of two years, one year earlier than the other two types of material. At the age of four years the micropropagated plants had abundant seed production, about 75% of that of the seedlings and about two times higher than that of the grafts. Thus, the micropropagated plants can be used instead of grafts when establishing polythene greenhouse seed orchards of birch.
Seed production of micropropagated plants, seedlings and grafts of Silver birch (Betula pendula Roth) in a polyethylene greenhouse experiment was followed for five years. The grafts started flowering and seed production at the age of two years, one year earlier than other two types of material. At the age of three the seed production of both micropropagated plants and seedlings was already more than two times higher than that of the grafts. Variation between the clones was high and plant type x clone interaction was significant. At the age of four, in 1993, seed production was high in all three types of material. Seed production of the micropropagated plants was two times higher than that of the grafts but about 75% of that of the seedlings. In 1994 seed production of all three plant types was very low, which shows large variation between different years. The early development of the plant material types suggests that micropropagated plants have higher seed production than grafts and could well be used instead of grafts in polythene greenhouse seed orchards.
The curly-grained trait of Betula pendula Roth is inheritable, but it is persumably not question of only one Mendelian gene since, for instance, there are a number of different types of curly-birch. The progeny obtained from controlled crossing between two curly-birch individuals do not all posses the curly-grained trait.
Plantlets were produced from adult curly-birch (Betula pendula var. carelica). Murashige and Skoog’s medium was used as the culture medium. Growth was initiated on a medium containing 1 mg/l BAP. Bud formation was induced using a medium containing 10 mg/l BAP and 0.2 mg/l NAA. Development of shoots was achieved on a medium containing ½ x Murashige and Skoog’s macrominerals and sucrose, 1/1 x Murashige and Skoog’s microminerals and vitamins, and 0.5 mg/l BAP and 0.5 mg/l IAA. The medium used for inducing root formation was the same as above, but without any growth regulators. The results indicate that adult deciduous trees can be best propagated through tissue culture when the least differentiated cells, i.e. the initial cells of the promeristem, are used as the startin material. The axillary buds provide easily available study material which can be prepared with little difficulty and are continuously renewed.
The PDF includes a summary in Finnish.