Micropropagated and seed-borne plants of sliver birch (Betula pendula Roth) were compared for survival and growth in a field trial at the age of six years. Three clones for micropropagation were selected from open-pollinated progenies of selected southern Finnish plus trees at the age of 17 and 20. The three seed-borne lots were of southern Finnish stand origin. The best two lots of the experiment as regards the height and diameter growth at the age of six were the clones. The best of these differed significantly from the best-growing seed-grown lot. The weakest lot of the experiment was also a clone which was clearly slow-growing with a dense and bushy crown. Survival of the material was high (mean = 94%), and there was no damage caused by voles and elks, for example. The results clearly show that the selection of material for clonal propagation should be done carefully. The clones should also be tested for performance in the field before propagation on a large scale.
Seed production of micropropagated plants, seedlings and grafts of Silver birch (Betula pendula Roth) in a polyethylene greenhouse experiment was followed for five years. The grafts started flowering and seed production at the age of two years, one year earlier than other two types of material. At the age of three the seed production of both micropropagated plants and seedlings was already more than two times higher than that of the grafts. Variation between the clones was high and plant type x clone interaction was significant. At the age of four, in 1993, seed production was high in all three types of material. Seed production of the micropropagated plants was two times higher than that of the grafts but about 75% of that of the seedlings. In 1994 seed production of all three plant types was very low, which shows large variation between different years. The early development of the plant material types suggests that micropropagated plants have higher seed production than grafts and could well be used instead of grafts in polythene greenhouse seed orchards.
The curly-grained trait of Betula pendula Roth is inheritable, but it is persumably not question of only one Mendelian gene since, for instance, there are a number of different types of curly-birch. The progeny obtained from controlled crossing between two curly-birch individuals do not all posses the curly-grained trait.
Plantlets were produced from adult curly-birch (Betula pendula var. carelica). Murashige and Skoog’s medium was used as the culture medium. Growth was initiated on a medium containing 1 mg/l BAP. Bud formation was induced using a medium containing 10 mg/l BAP and 0.2 mg/l NAA. Development of shoots was achieved on a medium containing ½ x Murashige and Skoog’s macrominerals and sucrose, 1/1 x Murashige and Skoog’s microminerals and vitamins, and 0.5 mg/l BAP and 0.5 mg/l IAA. The medium used for inducing root formation was the same as above, but without any growth regulators. The results indicate that adult deciduous trees can be best propagated through tissue culture when the least differentiated cells, i.e. the initial cells of the promeristem, are used as the startin material. The axillary buds provide easily available study material which can be prepared with little difficulty and are continuously renewed.
The PDF includes a summary in Finnish.