Current issue: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'transpiration'

Category : Article

article id 5405, category Article
Pertti Hari, Eeva Korpilahti, Toivo Pohja, Pentti K. Räsänen. (1990). A field system for measuring the gas exchange of forest trees. Silva Fennica vol. 24 no. 1 article id 5405. https://doi.org/10.14214/sf.a15557
Keywords: photosynthesis; CO2; monitoring; measuring methods; transpiration; environment; gas exchange; respiration
Abstract | View details | Full text in PDF | Author Info

A third generation of forest tree gas exchange measuring system design for the use in the field is described. The system is designed to produce data for determining the dependence of the rate of tree photosynthesis, respiration and transpiration on environmental factors. The system consists of eight cuvettes, a tubing system, two infrared gas analysers, an air flow controller, a data logger, and a computer. The measuring cuvette is a clap type, i.e. it is mostly open, only closing during measurement. CO2 exchange is measured as the change in the cuvette concentration of CO2, and, transpiration is measured as the increase in water vapour concentration while the cuvette is closed. The environmental factors measured are temperature, irradiance and air pressure. The system was planned in 1987 and constructed in 1988. It worked reliably in late summer 1988 and the quality of data seems to be satisfactory. 

The PDF includes an abstract in Finnish.

  • Hari, E-mail: ph@mm.unknown (email)
  • Korpilahti, E-mail: eeva.korpilahti@luke.fi
  • Pohja, E-mail: tp@mm.unknown
  • Räsänen, E-mail: pr@mm.unknown
article id 5146, category Article
J. N. Cape, D. Fowler. (1981). Changes in epicuticular wax of Pinus sylvestris exposed to polluted air. Silva Fennica vol. 15 no. 4 article id 5146. https://doi.org/10.14214/sf.a15373
Keywords: Pinus sylvestris; needles; Scots pine; damage; air pollution; environmental impact; sulphur dioxide; foliage; epicuticular vax; cuticular transpiration
Abstract | View details | Full text in PDF | Author Info

Scanning Electron Microscopy was used to study structural changes in epicuticular vax of Pinus sylvestris L. with time. Changes in the contact angle of water droplets and in cuticular transpiration were also measured. By using material from a polluted and an unpolluted site it was shown that the ageing process occurs faster on polluted air, leading to greater cuticular transpiration and smaller contact angles at polluted sites.

  • Cape, E-mail: jc@mm.unknown (email)
  • Fowler, E-mail: df@mm.unknown
article id 5134, category Article
Henry Rufelt, Björn Wiese. (1981). A method for determination of the effects of air pollutants on the stomatal width. Silva Fennica vol. 15 no. 4 article id 5134. https://doi.org/10.14214/sf.a15361
Keywords: methods; transpiration; air pollution; environmental impact; stomatal movements; SO2
Abstract | View details | Full text in PDF | Author Info

The water in different parts of a plant forms a continuum throughout the plant body. This makes it possible to record changes in the water content as changes in thickness of any part of the plant. A leaf kept in darkness has been found to change its thickness to a sufficient degree for recordings of changes in transpiration from the rest of the plant. The rapidness of the changes makes it probable that they are mirroring the stomatal movements.

The method has been used for recording of influences of SO2 as air pollutant. It has a couple of advantages over direct measurements of changes in transpiration. One is that the measurement can be used without enclosing the plant in a cuvette. Another is that possibly occurring effects on the hygrometer are eliminated. The method has until now mainly been used for wheat plants but also woody plants as Pinus and Salix have been tested.

  • Rufelt, E-mail: hr@mm.unknown (email)
  • Wiese, E-mail: bw@mm.unknown
article id 5019, category Article
Pertti Hari, Markku Kanninen, Seppo Kellomäki, Olavi Luukkanen, Paavo Pelkonen, Raimo Salminen, Heikki Smolander. (1979). An automatic system for measurements of gas exchange and environmental factors in a forest stand, with special reference to measuring principles. Silva Fennica vol. 13 no. 1 article id 5019. https://doi.org/10.14214/sf.a14873
Keywords: Pinus sylvestris; photosynthesis; Scots pine; environmental factors; ecology; transpiration; measurement tecniques; forest stand
Abstract | View details | Full text in PDF | Author Info

A system for measuring the net photosynthesis, transpiration and environmental factors within the canopy and ground cover vegetation is described. The system operates continuously throughout the growing season in a young Scots pine (Pinus sylvestris L.) stand. A data-logging unit controls the system and carries out the measurements on the readings of the sensors of photosynthesis, transpiration, light intensity outside the canopy, light climate inside the assimilation chambers, and dry and wet temperatures from selected points. These measurements are shown digitally and automatically punched onto paper tape.

The PDF includes a summary in Finnish.

  • Hari, E-mail: ph@mm.unknown (email)
  • Kanninen, E-mail: mk@mm.unknown
  • Kellomäki, E-mail: sk@mm.unknown
  • Luukkanen, E-mail: ol@mm.unknown
  • Pelkonen, E-mail: pp@mm.unknown
  • Salminen, E-mail: rs@mm.unknown
  • Smolander, E-mail: hs@mm.unknown
article id 4940, category Article
Paavo Pelkonen, Heikki Smolander. (1976). Männyn kaasunvaihdon elpyminen talvilevon keskeytyessä. Silva Fennica vol. 10 no. 2 article id 4940. https://doi.org/10.14214/sf.a14786
English title: Increase in gas exchange rate in Scots pine by terminating the winter rest period.
Original keywords: mänty; fotosynteesi; aineenvaihdunta; haihdunta; talvilepo
English keywords: Pinus sylvestris; Scots pine; net photosynthesis; winter dormancy; transpiration
Abstract | View details | Full text in PDF | Author Info

The activation of CO2 exchange was monitored in two Scots pine (Pinus sylvestris L.) seedlings transferred from the field to the laboratory in December. Gas exchange was monitored by an URAS I infrared gas analyser in a so-called open IRGA-system with trap type chambers. Transpiration was also measured at the same time by weighing the potted seedlings twice a day. The measuring period lasted eleven days. During the period, the level of both transpiration and net photosynthesis increased about ten times. Furthermore, it was found that the level of photosynthesis at high temperatures was relatively lower at the beginning than at the end of the measuring period.

The PDF includes a summary in English.

  • Pelkonen, E-mail: pp@mm.unknown (email)
  • Smolander, E-mail: hs@mm.unknown
article id 4737, category Article
S. A. Wilde. (1967). Production of energy material by forest stands as related to supply of soil water. Silva Fennica vol. 1 no. 1 article id 4737. https://doi.org/10.14214/sf.a14447
Keywords: biomass; forest growth; soil water; supply of transpiration water; red pine; Pinus resinosa
Abstract | View details | Full text in PDF | Author Info

This study estimates the supply of soil water required for the annual and total production of energy material by the biomass of 32-year-old plantation of red pine, Pinus resinosa Ait. in Wisconsin, the United States.

The supply of transpiration water was determined as the sum of summer precipitation, winter stored water, and condensed vapor, minus gravitational discharge and evaporation of intercepted rainfall. On the average, the 1,20 m root zone of coarse sandy soils of central Wisconsin receives 2,750 M.T. of water per hectare. During the 32nd year of plantation growth, the increment biomass, including 43% of merchantable timber, was 10,100 kg/ha, or 162 x 105 kcal/g. At this time of the culminating growth, the production of 1 kg of wood material consumed 272 kg of water. The corresponding transpiration coefficient 0,37% is near the maximum for the ecosystem of hard pines – sandy soils of glacial outwash with field capacity between 7 and 9%. On the weight basis, the annual leaf fall constituted 32% of the biomass and over 80% of merchantable timber.

The entire supply of water of 96,000 M.T./ha produces in 32 years 211,112 kg of total dry matter at a rate of 1 kg of wood per 455 kg of water, with corresponding transpiration coefficient of 0,22%. The evapogravitational losses during the early stages of the stand’s growth decreased the water utilization efficiency of trees about 40%.

The information obtained permitted to outline several hydrological relationships pertinent to forest culture, namely: maximum rate of forest growth as delineated by the supply of available transpiration water; content of available moisture in soils of high tension capacity; contribution to soil water rendered by natural subirrigation and condensation of athmospehric vapor; growth depressing effect of weeds.

The PDF includes a summary in Finnish.

  • Wilde, E-mail: sw@mm.unknown (email)

Category : Article

article id 7145, category Article
Leo Heikurainen. (1963). Use of ground water table fluctuations for measuring evapotranspiration. Acta Forestalia Fennica vol. 76 no. 5 article id 7145. https://doi.org/10.14214/aff.7145
Keywords: drained peatlands; methods; ground water table; transpiration
Abstract | View details | Full text in PDF | Author Info

Lowering of the ground water table is caused by decrease in the amount of water because of evapotranspiration. Evapotranspiration of a forest is determined by converting a lowering of the ground water table into a decrease in the amount of water. This paper describes a method to determine the transpiration of tree stands and ground vegetation as well as total evaporation on a Finnish drained peatland, which ground water table was relatively high, by measuring the level of the ground water table.

It was shown that in drained peatlands with relatively high ground water level, the ground water table fell during the day between about 9 a.m. and 6 p.m., and remain at approximately same level during rest of the day. The fall of ground water table was caused by transpiration of the trees and ground vegetation, and could be over 20 mm. Thus, measuring the daily lowering of ground water table can be used to estimate transpiration of the trees. When the method is applied to measuring the total evaporation of longer periods of time, also rainfall, interception, stand rainfall and stemflow have to be measured. The method is applicable only on sites with relatively high ground water level.

The PDF includes a summary in Finnish.

  • Heikurainen, E-mail: lh@mm.unknown (email)
article id 7661, category Article
Jesada Luangjame. (1990). Salinity effects in Eucalyptus camaldulensis and Combretum quadrangulare: ecophysiological and morphological studies. Acta Forestalia Fennica no. 214 article id 7661. https://doi.org/10.14214/aff.7661
Keywords: biomass; photosynthesis; allocation; photorespiration; transpiration; respiration; water deficit; salinity; carbon dioxide compensation point; leaf resistance; water-use efficiency; stomatal resistance; stomatal movement; Eucalyptus camaldulensis; Combretum quadrangulare
Abstract | View details | Full text in PDF | Author Info

The aim of this study was to investigate the ecophysiological and morphological characteristics of two salt-tolerant tree species, Eucalyptus camaldulensis Dehn. and Combretum quadrangulare Kurz. A greenhouse experiment with different levels of NaCl salinity (0, 0.5, 1.0, 1.5, and 2.0%) was set up and the results were compared with those of a field study on non-saline and saline soils. The determination of optimum gas exchange and the development and evaluation of photosynthetic models with and without water deficit were also included in this study.

Morphological characteristics under saline conditions showed that shoot height and diameter growth, shoot internode length, root length/biomass, leaf width and length, leaf area, number and biomass, and shoot/root and leaf/root ratios decreased with salinity, while leaf thickness increased with salinity. More growth was allocated to the roots than to the leaf canopy. Ecophysiological studies in laboratory showed that photosynthesis, stomatal conductance and water potential decreased with salinity, while the CO2 compensation point increased with salinity. Transpiration, dark respiration and photorespiration increased at low salinity but decreased at high salinity levels. In the field study, however, there were no significant differences in stomatal conductance and opening between saline and non-saline soils. Model predictions supported the results of the field measurements. Adaptation to salinity was reflected in an acclimatization of tree structure in the field study. There were both functioning and structural changes of seedlings in the greenhouse experiment

In terms of ecophysiological and morphological characteristics, E. Camaldulensis showed better salt tolerance than C. Quadragulare both in the greenhouse experiment and field study

The PDF includes a summary in Finnish.

  • Luangjame, E-mail: jl@mm.unknown (email)
article id 7653, category Article
Ladawan Atipanumpai. (1989). Acacia mangium : Studies on the genetic variation in ecological and physiological characteristics of a fastgrowing plantation tree species. Acta Forestalia Fennica no. 206 article id 7653. https://doi.org/10.14214/aff.7653
Keywords: photosynthesis; provenance; water stress; foliar analysis; stomata; heritability; half-sib families; photorespiration; dark respiration; transpiration; Acacia mangium; carbon dioxide compensation; dendrometry; leaf conductance
Abstract | View details | Full text in PDF | Author Info

Genetic variation in the physiological characteristics and biomass accumulation of Acacia mangium Willd. was studied in both field and laboratory conditions. Variation in the growth characteristics, foliar nutrient concentration, phyllode anatomy and stomatal frequency was analysed in 16 different origins under field conditions in Central Thailand. Family variation and heritability of growth and flowering frequency were calculated using 20 open-pollinated families at the age of 28 months. The effect of environmental factors on diameter growth in different provenances is also discussed.

Under laboratory conditions, such physiological characteristics as transpiration rate, leaf conductance and leaf water potential were measured at varying soil moisture conditions. The responses of photosynthesis, photorespiration and dark respiration as well as the CO2 compensation point to temperature and irradiance were also investigated. All physiological characteristics indicated differences among provenances. An attempt was made to relate the results obtained in the laboratory to the growth performance in the field. Recommendations on provenance selection for the planting of A. mangium in Thailand are also given.

The PDF includes a summary in Finnish.

  • Atipanumpai, E-mail: la@mm.unknown (email)
article id 7649, category Article
Eeva Korpilahti. (1988). Photosynthetic production of Scots pine in the natural environment. Acta Forestalia Fennica no. 202 article id 7649. https://doi.org/10.14214/aff.7649
Keywords: annual cycle; rate of photosynthesis; transpiration rate; stomatal regulation; irradiance response
Abstract | View details | Full text in PDF | Author Info

The dependence of the rates of photosynthesis and transpiration are studied on the environmental factors and on the control of the plant metabolism with Scots pine (Pinus sylvestris L.) in the natural environment. The importance of the different environmental factors to the photosynthetic production are evaluated. In modelling the dependence of the rates of photosynthesis and transpiration on the environmental factors and on the control processes, a dynamic system analysis approach is applied. Irradiance, temperature and water are explored during the annual cycle. Field measurements of the CO2 exchange and environmental factors over three years are used in the analysis of the rate of the photosynthesis. The effect of different environmental factors on photosynthetic production is evaluated by model estimations using weather data in a 20-year period.

The PDF includes a summary in Finnish.

  • Korpilahti, E-mail: ek@mm.unknown (email)
article id 7595, category Article
Erkki Hallman, Pertti Hari, Pentti K. Räsänen, Heikki Smolander. (1978). Effect of planting shock on the transpiration, photosynthesis, and height increment of Scots pine seedlings. Acta Forestalia Fennica no. 161 article id 7595. https://doi.org/10.14214/aff.7595
Keywords: Pinus sylvestris; photosynthesis; Scots pine; planting; stress; seedlings; drought; transpiration; water deficit
Abstract | View details | Full text in PDF | Author Info

In the experiment Scots pine (Pinus sylvestris L.) seedlings were transplanted out in the field. The effect of the treatments on gas metabolism and daily height increment were examined. The seedlings were 5-year old Scots pine plants growing in clay pots, covered with plastic bags. Transpiration and photosynthetic rates were monitored with open IRGA measuring system for a few days before being subjected to the treatments and for one month after. In addition, the daily amounts of transpired water and daily height increments were measured. A model for the potential rate of each metabolic process was constructed.

Planting and additional exposure had a strong and rather permanent effect on the self-regulation of the processes. This effect is very similar to that caused by water deficit. Exposure makes the disturbance more pronounced. Transpiration of the transplanted seedlings decreased in a few days after planting to less than half of the potential value and that of the exposed ones decreased to a quarter of the potential value. The daily amounts of photosynthesis decreased to half of the potential value. There was no recovery in photosynthesis during the whole monitoring period of four weeks. There was a slight recovery in transpiration about five weeks after transplanting.

Thus, the treatment probably generated stress conditions throughout the whole growing period, which is characterized by strong self-regulation of photosynthesis and transpiration, thus causing an essential decrease in the total amount of CO2 fixed. The photosynthesis was depressed especially at elevated temperatures after planting, as during water deficit. Planting and additional exposure did not produce any detectable changes in the dependence of the growth rate on temperature or in the effect of self-regulation on height growth. On the other hand, the level of growth was decreased as a result of planting out.

The PDF includes a summary in Finnish.

  • Hallman, E-mail: eh@mm.unknown (email)
  • Hari, E-mail: ph@mm.unknown
  • Räsänen, E-mail: pr@mm.unknown
  • Smolander, E-mail: hs@mm.unknown

Category : Research article

article id 1687, category Research article
Hannu Hökkä, Jori Uusitalo, Harri Lindeman, Jari Ala-Ilomäki. (2016). Performance of weather parameters in predicting growing season water table depth variations on drained forested peatlands – a case study from southern Finland. Silva Fennica vol. 50 no. 4 article id 1687. https://doi.org/10.14214/sf.1687
Keywords: peatland; precipitation; bearing capacity; evapotranspiration; mixed linear model; water table depth
Highlights: Four-week precipitation and evapotranspiration explain much of drained peatland water table depth variation during a growing season.
Abstract | Full text in HTML | Full text in PDF | Author Info

The amount of water in peat soil is one factor affecting its bearing capacity, which is a crucial aspect in planning peatland timber harvesting operations. We studied the influence of weather variables on the variation of drained peatland growing season water conditions, here the ground water table depth (WTD). WTD was manually monitored four times in 2014 and three times in 2015 in 10–30 sample plots located in four drained peatland forests in south-western Finland. For each peatland, precipitation and evapotranspiration were calculated from the records of the nearest Finnish Meteorological Institute field stations covering periods from one day to four weeks preceding the WTD monitoring date. A mixed linear model was constructed to investigate the impact of the weather parameters on WTD. Precipitation of the previous four–week period was the most important explanatory variable. The four-week evapotranspiration amount was interacting with the Julian day showing a greater effect in late summer. Other variables influencing WTD were stand volume within the three-metre radius sample plot and distance from nearest ditch. Our results show the potential of weather parameters, specifically that of the previous four-week precipitation and evapotranspiration, for predicting drained peatland water table depth variation and subsequently, the possibility to develop a more general empirical model to assist planning of harvesting operations on drained peatlands.

  • Hökkä, Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Paavo Havaksen tie 3, FI-90014 Oulun yliopisto, Finland E-mail: hannu.hokka@luke.fi (email)
  • Uusitalo, Natural Resources Institute Finland (Luke), Green Technology, Kaironiementie 15, FI-39700 Parkano, Finland E-mail: jori.uusitalo@luke.fi
  • Lindeman, Natural Resources Institute Finland (Luke), Green Technology, Kaironiementie 15, FI-39700 Parkano, Finland E-mail: harri.lindeman@luke.fi
  • Ala-Ilomäki, Natural Resources Institute Finland (Luke), Green Technology, Jokiniemenkuja 1, FI-01370 Vantaa, Finland E-mail: jari.ala-ilomaki@luke.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles