Current issue: 58(5)
Distribution and occurrence of bark beetles and other forest insects in relation to environmental variation were analysed by multivariate methods. Eight different forest edges were studied using 10 x 10 m sample plots that formed 200 m linear transects perpendicular to the forest edge. Forest edge affected the distribution of insect species only in the edges between mature, non-managed spruce stands and clear cuts or young seedling stands, but not in the pine stands. The occurrence of the selected forest insects mainly depended on variables associated with the amount and quality of suitable woody material. The most significant environmental variables were forest site type, crown canopy coverage, tree species, number of stumps, number of dead spruce trunks and amount of logging waste at site. Quantitative classification of species and sample plots showed that some specialized species (Xylechinus pilosus, Cryphalus saltuarius, Polygraphus poligraphus and P. subopacus) adapted to mature spruce forests, tended to withdraw from the forest edge to interior stand sites. By contrast many generalized species (Pityogenes chalcographus, P. quadridens, Pissodes spp., Hylurgops palliatus, Tomicus piniperda, Dryocoetes spp. and Trypodendron lineatum) benefitted from cuttings and spread over stand borders into mature forest.
Nearly every forest land in Finland has been burnt down by a wildfire at least once during the past 400–500 years. Slash and burn cultivation (1700–1920) was practised on 50–75 percent of Finland's forests, while prescribed burning (1920–1990) has been applied to 2–3 percent of the country's forests. Because of land-use changes and efficient fire prevention and control systems, the occurrence of wildfires in Finland has decreased considerably during the past few decades. Owing to the biodiversity and ecologically favourable influence of fire, the current tendency is to revive the use of controlled fire in forestry in Finland. Prescribed burning is used in forest regeneration and endeavours are being made to revert old conservation forests to the starting point of succession through forest fires.
Postfire recovery of species diversity (including a number of species, entropy of species relative coverage (Shannon index of species diversity) was studied in lichen and green moss site types of Scots pine (Pinus sylvestris L.) forests in the central part of the Kola Peninsula. The results obtained indicate the difference in the dynamics of characteristics of biodiversity of forest components during postfire recovery. The stabilization of separate components of forest community varies in time from 5–15 to 120–140 years after the fire. Characteristics of the dwarf shrub and herb stratum recovered and stabilized 5–15 years after fire, while the complete stabilization of characteristics of moss-lichen cover is observed in community with fire ages of 90–140 years. Species richness of tree stratum recovered 120–140 years after fire. Time of complete stabilization of species richness of the community was estimated 120–140 years after fire. The size of the area over which characteristics of the biodiversity were estimated effected the mean values and, in most cases, the character of variation of studied characteristics. Over an area of 1 x 1 m dynamics of characteristics of species diversity coincide in forests of the studied types. Regardless of forest type within the area of 100 m2 species richness recovered 30 years after the fire (i.e. 3–5 times earlier than the establishment of the complete stabilization of the forest structure). That means that floristic composition of the forest remained unchanged from 30 to 210 years after the fire.
The productivity of Scots pine (Pinus sylvestris L.) under changing climatic conditions in the southern part of Finland was studied by scenario analysis with a gap-type forest ecosystem model. Standard simulations with the model predicted an increased rate of growth and hence increased productivity as a result of climatic warming. The gap-type model was refined by introducing an overwintering sub-model describing the annual growth cycle, frost hardiness, and frost damage of the trees. Simulations with the refined gap-type model produced results conflicting with those of the standard simulation, i.e., drastically decreased productivity caused by mortality and growth-reducing damage due to premature dehardening in the changing climate. The overwintering sub-model was tested with frost hardiness data from Scots pine saplings growing at their natural site 1) under natural conditions and 2) under elevated temperature condition, both in open-top chambers. The model predicted the frost hardiness dynamics quite accurately for the natural conditions while underestimating the frost hardiness of the saplings for the elevated temperature conditions. These findings show that 1) the overwintering sub-model requires further development, and 2) the possible reduction of productivity caused by frost damage in a changing climate is less drastic than predicted in the scenario analysis. The results as a whole demonstrated the need to consider the overwintering of trees in scenario analysis carried out with ecosystem model for boreal conditions. More generally, the results revealed a problem that exists in scenario analysis with ecological models: the accuracy of a model in predicting the ecosystem functioning under present climatic condition does not guarantee the realism of the model, nor for this reason the accuracy for predicting the ecosystem functioning under changing climatic conditions. This finding calls for the continuous rigorous experimental testing of ecological models used for assessing the ecological implications of climatic change.
Investigations carried out in the Kola peninsula (northern taiga) and in the South-western part of Western Siberia (southern taiga and forest-steppe) revealed identical course of the postfire restoration process of forest litter thickness in Scots pine (Pinus sylvestris L.) forests. Despite the differences in mean annual temperature (2°C) and other climatic characteristics the recovery time for thickness of forest litter in both regions amounts to 90–100 years after fire in pine forests of lichen site type and 120–140 years – in green moss type; the thickness of forest litter therewith corresponds 3–4 cm and 7–8 cm respectively. That mean that within the natural borders of pine forests, communities of a specific type possess uniform characteristics of restoration. On the basis of empirical data, it appears that the predicted increase of mean annual temperature of earth surface by (2°C) will not bring changes into the character of postfire recovery of forest litter thickness. It was shown that during the period of the recovery, which spans about 90 years after fire in pine forests of lichen and green moss-lichen site types and 140 years in ones of green moss site types, the rate of increasing of carbon store in the forest litter averaged 0.6 t ha-1 year-1, 0.1 t ha-1 year-1 and 0.2 t ha-1 year-1, respectively.
A multi-factor experimental approach and proportional odds model were used to study interactions between five environmental factors significant to Norway spruce (Picea abies (L.) H. Karst.) seed germination: prechilling (at +4.5°C), suboptimal temperatures (+12 and +16°C), osmotically induced water stress (0.3 Mpa and 0 Mpa), prolonged white light, and short-period of far-red light. Temperature and osmotic stress interacted with one another in the germination of seeds; the effect off osmotic stress being stronger at +16°C than at +12°C. In natural conditions, this interaction may prevent germination early in the summer when soil dries and temperature increases. Prolonged white light prevented germination at low temperature and low osmotic potential. Inhibitory effect was less at higher temperatures and higher osmotic potential, as well as after prechilling. Short-period far-red light did not prevent germination of unchilled seeds in darkness. Prechilling tended to make seeds sensitive to short pulses of far-red light, an effect which depended on temperature: at +12°C the effect on germination was promotive, but at +16°C, inhibitory and partly reversible by white light. It seems that Norway spruce seeds may have adapted to germinate in canopy shade light rich in far-red. The seeds may also have evolved mechanisms to inhibit germination in prolonged light.
Abundant snowfalls and thick snow cover influence forest ecology mainly in two ways. Snow loading increases the number of damaged stems, which increases the amount of decay in stems, in its turn important for many animals. Second, the ground remains unfrozen under the snow cover, which is of crucial importance for many perennial species of ground vegetation. These winter phenomena also have influenced the early Finnish culture as man in his everyday life in the wilderness was in close contact with nature. In this paper, ecological interactions between snow conditions, forest flora, fauna and early culture are discussed mainly with reference to the province of Uusimaa in Southern Finland.
Moose (Alces alces L.) browsing was studied in young Scots pine (Pinus sylvestris L.) stands mixed with deciduous trees in high-density winter ranges. The proportional use of twig biomass decreased as the availability increased. The total as well as proportional biomass consumption were higher on the moist than on the dry type of forest. The per tree consumption of pine was higher on the moist type, where the availability of pine was lower. Deciduous trees were more consumed on the moist type, where their availability was relatively high. The consumption of pine saplings increased as the availability of birch increased. Pine stem breakages were most numerous when birch occurred as overgrowth above pine and at high birch densities. The availability of other deciduous tree species did not correlate with browsing intensity of Scots pine. Moose browsing had seriously inhibited the development of Scots pines in 6% of the stands, over 60% of available biomass having been removed. Rowan and aspen were commonly over-browsed and their height growth was inhibited, which occurred rarely by birch. There was no difference in the proportion of young stands in forest areas with high and low moose density. A high proportion of peatland forests was found to indicate relatively good feeding habitats in the high-density areas.
The PDF includes an abstract in Finnish.
A model for the succession of the forest ecosystem is described. The growth and development of trees and ground cover are controlled by temperature and light conditions and the availability of nitrogen and water. In addition, the effects of the annual cycle of trees including the risk of frost damage, wild fire, and wind damages are contained in the model as factors which control the survival and productivity of trees. The model also makes it possible to evaluated the risk of insect attack assuming that this risk is inversely related to the growth efficiency of trees.
The PDF includes an abstract in Finnish.
The occurrence of Caleopsis bifida on clear-cut and burned forest soil and its disappearance in 4–6 years after disturbance is attributed to its germination ecology. Initially the seeds are dormant 96–100% and remain dormant in nylon gaze bags in different types of forest humus layers at least 10 years. Dormancy is released in laboratory (1) by treatment of 100 ppm aqueous solution of GA3, (2) by heating the dormant seeds to 40–55°C for 1–5 h, and (3) by 1% KNO3 solution. It is concluded that conditions in clear-cut and burned areas favour germination of seeds in regard to temperature and content of nitrates in contrast to humus of closed vegetation where the seeds remain dormant.
The PDF includes an abstract in Finnish.
MAB Project 2 concentrates on the influences of man’s activities on forests with no special consideration to any particular research field. At the same time as the swift development of research methods has brought the natural sciences and forest biology very near to each other, the circle of users of research results in forest biology has widened to include area and city planners etc. In Finland, the main role of MAB Project 2 is to promote mutual exchange between the users and producers of research results in forest biology and to facilitate both national and international co-operation between all research workers and organizations interested in this field.
This paper was presented in the ‘Man and the Biosphere’ programme project 2 seminar held on August 24–25 1978 in Hyytiälä research station of University of Helsinki.
The term ’multiple use’ was introduced in Finland in the late 1960’s as a planning principle for the use of natural resources. It was hoped that multiple use, in contrast to ’single use’, would be less destructive and more amenable to multiple interests and to more efficient planning. However, the term ’multiple use’ carries several hidden assumptions which superficially at least seem easy to handle but which may, at the very end, prove equally destructive to the planned object. This term generally lacks the dimensions of time and place. In reality, different uses follow in a definite sequence and in definite place. As a planning strategy, multiple use may lead, if carelessly applied, to quite unexpected results that run contrary to the intended purposes.
This paper was presented in the ‘Man and the Biosphere’ programme project 2 seminar held on August 24–25 1978 in Hyytiälä research station of University of Helsinki.
The PDF includes a summary in English.
Man and the Biosphere (MAB) programme of UNESCO was launched in 1970. This interdisciplinary programme represents a new integrated approach to research, training and action aimed at improving man’s partnership with the environment. It consists of 14 project areas.
The Academy of Finland and the Finnish Committee for the MAB, in cooperation with the University of Helsinki and the city of Tampere organized a seminar with an aim of reviewing the execution of the Finnish participation in the MAB project No. 2. The seminar took place at Hyytiälä, a forest research station of the University of Helsinki, on August 24–25 1978.
During the seminar, an excursion was made to Pyynikki esker, a unique natural park close to the centre of the city of Tamper. Eight papers were presented and discussed in the seminar. The papers are published in this issue of Silva Fennica.
The PDF includes a summary in English.
A system for measuring the net photosynthesis, transpiration and environmental factors within the canopy and ground cover vegetation is described. The system operates continuously throughout the growing season in a young Scots pine (Pinus sylvestris L.) stand. A data-logging unit controls the system and carries out the measurements on the readings of the sensors of photosynthesis, transpiration, light intensity outside the canopy, light climate inside the assimilation chambers, and dry and wet temperatures from selected points. These measurements are shown digitally and automatically punched onto paper tape.
The PDF includes a summary in Finnish.
The study is the first report of a larger project concerning fire ecology in the Finnish boreal forests. Modern forestry has never been practiced in the Ulvinsalo strict nature reserve (2,500 ha) in Northern Finland in the county of Kuhmo. Forest fires have been uncommon because of mosaic of mineral and peat soils. The forests are mostly Norway spruce (Picea abies (L.) H. Karst.) dominated with Scots pine (Pinus sylvestris L.) often as the oldest trees of a stand. Forest fires were dated by counting annual rings from cambium to the fire scar in pines. 73 stands covering 1,207 ha were surveyed, over 80% of which was on mineral soil.
50% of the area had burned at least once during the life time of the present pine trees. 48 different forest fires were found, the first being from the year 1712 and the latest from 1969. The average time elapsed between the fires was about 82±43 years, and range 18–219 years. It was assumed that the stands where no fire scars were found, had, however, regenerated after fires but no fires have occurred since after that. In latter part of the 19th century 21 forest fires were dated, in the other half centuries only 4–9. This may have been caused by the increased human activity in the late 1800’s. The fire rotation of the area is 280 years, and spruce is almost the only tree species, which can regenerate in the present situation.
The PDF includes a summary in English.
Silva Fennica Issue 64 includes presentations held in 1947 in the third professional development courses, arranged for foresters working in the public administration. The presentations focus on practical issues in forest management and administration, especially in regional level. The education was arranged by Forest Service. Two of the presentations were published in other publications than Silva Fennica.
This presentation describes how the natural processes of forests and succession could be utilized in forest management and silviculture.
There has not been complete agreement as to what is meant by ectendotrophic mycorrhizae, and there is a wide variety of opinion among authors on mycorrhizal terminology. In this paper ectendotrophic mycorrhizae are defined to be short roots with Hartig net and intracellular hyphae in the cortex. A mantle and digestion of intracellular hyphae may be found but are not necessary. In the study of Mikola (1965) ectendotrophic mycorrhiza was found to be common in Scots pine (Pinus sylvestris L.) seedlings in Finnish nurseries. The mycorrhizae had always similar structure and the mycelium isolated from the seedlings (E-strains) was similar. The aim of this study was to find out what kind of ectendotrophic mycorrhizae exist in forests and nurseries outside Finland, what kind of mycorrhizae do the E-strains isolated from Scots pine form with other tree species, and are these associations symbiotic.
Only one type of ectendotrophic mycorrhiza was found on the 600 short roots collected from the continents of Europa and America. The type was similar to the one described by Mikola: the mycelium is coarse and forms a strong Hartig net, and intracellular infection is heavy. Evidence is convincing that this structure was formed by the same fungus species. The species is unidentified. Mycorrhizae synthesized by E-strain with six spruce species, fir, hemloch and Douglas fir were all ectotrophic.
The E-type ectendotrophic mycorrhizae proved to be a balanced symbiosis. The seedlings of 13 tree species inoculated with the E-strain grew in the experiment better than the controls. The observation that ectendotrophic mycorrhizae dominates in the nurseries but is seldom found in forests, and then only in seedlings growing in the forest, was confirmed in the study. In synthesis experiments E-strain formed either ecto- or ectendotrophic mycorrhiza depending on the tree species.
The effect of different fertilizer treatments on the invertebrate fauna on coniferous forest soil were investigated during the years 1979-83 both in field and in laboratory experiments. Fertilizers tested were urea (both alone and with P and K), ammonium nitrate and ashes. Ash-treatment was also controlled by raising the pH at the same level with Ca(OH)2.
Both ashes and urea resulted in considerable changes in the soil fauna. Nematodes, especially bacterial feeders, increased temporarily. Some families of Coleoptera invaded the urea-treated plots. Enchytraceid worms and several microarthropod species decreased, as well as the total animal biomass. Ash-treatment influenced more slowly than did urea-fertilizing, but it caused more permanent changes. Ammonium nitrate with lime had little influence in the field. All fertilizers affected more strongly when mixed with soil in laboratory. pH alone proved to explain most of the changes observed, but nitrogen as a nutrient also plays role independently of acidity.
The PDF includes a summary in Finnish.
Mechanical site preparation (MSP) is used prior to planting to control competing vegetation and enhance soil conditions, particularly in areas prone to paludification. Tree planting density can be adapted to the management context and objectives, as it influences yield and wood quality. However, the combined effects of MSP and planting density on understory vegetation composition, functional traits, and diversity remain uncertain. We thus conducted a study in the Clay Belt region of northwestern Quebec, Canada. After careful logging, the study area was divided into nine sites, each receiving one of three treatments: plowing, disc trenching, or no preparation. Sites were further divided into two, with black spruce (Picea mariana [Mill.] Britton, Sterns & Poggenb.) seedlings planted at either a low planting density of 1100 seedlings ha-1 or a high planting density of 2500 seedlings ha-1. After nine years, we assessed understory composition, diversity, key functional traits, sapling density and growth of planted trees. Careful logging alone led to a higher density of naturally established conifers compared to plowing or disc trenching. The interaction between planting density and MSP significantly influenced understory diversity and composition in plowed plots. Understory composition was affected by the soil C/N ratio, coniferous species, and deciduous species density. The growth of black spruce was notably enhanced with higher planting density in the plow treatment only. Neither planting density nor MSP alone affected tree height and diameter. Our results suggest that combining plowing with high-density planting can enhance stand growth and improve forest productivity. These findings guide future research on paludified forests.
The resilience of closed-crown coniferous stands within the boreal forest of North America is highly dependent on successful re-establishment of tree species following fire. A shift from closed-crown forest to open lichen woodland is possible following poor natural regeneration during the initial establishment phase, followed by the development of extensive lichen cover, which may hinder ongoing recruitment. We examined the development of the crustose lichen Trapeliopsis granulosa (Hoffm.) 18 to 21 years following fire within six sites in the boreal forest of northwestern Quebec, and explored its potential to affect ongoing recruitment during early successional stages of stand development. Germination and survivorship trials were conducted within the laboratory to determine the establishment rate of Pinus banksiana Lamb. (jack pine) on T. granulosa, mineral soil, and burnt duff under two separate watering frequencies (observed and drought). Survival and establishment rates of jack pine were highest on burnt duff, and poor on both T. granulosa and mineral soil. Under the drought treatment, no seedlings survived on any substrates. In the field, T. granulosa cover had a positive relationship with mineral soil cover, and negative relationships with duff cover, ericaceous shrub cover, organic layer depth, other lichen cover, and Sphagnum moss cover. No discernable relationship was found between T. granulosa and tree density, rock cover, dead wood cover or other moss cover. The development of extensive T. granulosa cover in fire-initiated stands can impede ongoing recruitment of conifer species due to its poor seedbed quality, thereby maintaining open forests.
Models attempting to predict treeline shifts in changing climates must include the relevant ecological processes in sufficient detail. A previous correlative model study has pointed to nutrients, competition, and temperature as the most important factors shaping the treelines of Pinus sylvestris L., Picea abies (L.) H. Karst. and Betula pubescens Ehrh. in Finnish Lapland. Here, we applied a widely used process-based dynamic vegetation model (LPJ-GUESS) to (i) test its capability to simulate observed spatial and temporal patterns of the main tree species in Finnish Lapland, and (ii) to explore the model representation of important processes in order to guide further model development. A European parameterization of LPJ-GUESS overestimated especially P. abies biomass and the species’ northern range limit. We identified implemented processes to adjust (competition, disturbance) and crucial processes in boreal forests to include (nutrient limitation, forest management) which account for the model’s failure to (edaphically) restrict P. abies in Finnish Lapland and the resulting species imbalance. Key competitive mechanisms are shade and drought tolerance, nutrient limitation, fire resistance, and susceptibility to disturbances (storm, herbivory) which we discussed with respect to boreal ecology and promising model developments to provide a starting point for future model development.