A multi-factor experimental approach and proportional odds model were used to study interactions between five environmental factors significant to Norway spruce (Picea abies (L.) H. Karst.) seed germination: prechilling (at +4.5°C), suboptimal temperatures (+12 and +16°C), osmotically induced water stress (0.3 Mpa and 0 Mpa), prolonged white light, and short-period of far-red light. Temperature and osmotic stress interacted with one another in the germination of seeds; the effect off osmotic stress being stronger at +16°C than at +12°C. In natural conditions, this interaction may prevent germination early in the summer when soil dries and temperature increases. Prolonged white light prevented germination at low temperature and low osmotic potential. Inhibitory effect was less at higher temperatures and higher osmotic potential, as well as after prechilling. Short-period far-red light did not prevent germination of unchilled seeds in darkness. Prechilling tended to make seeds sensitive to short pulses of far-red light, an effect which depended on temperature: at +12°C the effect on germination was promotive, but at +16°C, inhibitory and partly reversible by white light. It seems that Norway spruce seeds may have adapted to germinate in canopy shade light rich in far-red. The seeds may also have evolved mechanisms to inhibit germination in prolonged light.