Current issue: 58(5)
The rule-based formal language of "stochastic sensitive growth grammars" was designed to describe algorithmically the changing morphology of forest trees during their lifetime under the impact of endogenous and exogenous factors, and to generate 3-D simulations of tree structures in a systematic manner. The description in the form of grammars allows the precise specification of structural models with functional components. These grammars (extended L-systems) can be interpreted by the software GROGRA (Growth grammar interpreter) yielding time series of attributed 3-D structures representing plants. With some recent extensions of the growth-grammar language (sensitive functions, local variables) it is possible to model environmental control of shoot growth and some simple allocation strategies, and to obtain typical competition effects in tree stands qualitatively in the model.
Possibilities of distance-independent and -dependent competition indices to describe the competition stress of an individual tree was studied in Southern Finland. Five half-sib open-pollinated families and one check lot of Scots pine (Pinus sylvestris L.) was used as study material in order to analyse competitive interactions of crown form and stand density variation. Almost all competition indices correlated strongly with radial increment. Thus distance-independent indices were adequate to describe competition in young row plantations, where distance effects between trees were implicitly eliminated. Correlations between indices and height increment were not significant. Along with the increase in competition, the width and length of the crown and the diameter increment of the stem of some narrow-crowned families decreased slowly compared to wide-crowned families.
The colonisation of a burned clear-cut by ants in southern Finland was monitored using pitfall traps, artificial nest sites, and direct nest sampling from the ground and stumps. Clearcutting and fire seemed to have destroyed wood-ant colonies (Formica rufa group), and also other mature-forest species suffered from fire. Myrmica ruginodis Nylander was able to survive only in less severely burned moist sites, whereas it benefitted from the enhanced light conditions in a non-burned clear-cut. The fire resulted in an essentially ant-free terrain into which pioneering species immigrated. The mortality of nest-founding queens appeared to be high. The results supported the hypothesis that the pioneering species tend to be those that are capable of independent colony founding, followed by species founding nests through temporary nest parasitism. The succession of the burned clear-cut differed from that of the non-burned one, suggesting that habitat selection in immigration and priority effects, i.e. competition, introduce deterministic components in the successional pathways of boreal ant communities.
The use of random parameter models in forestry has been proposed as one method of incorporating different levels of information into prediction equations. By explicitly considering the variance-covariance structure of observations and considering some model parameters as random rather than fixed, one can incorporate more complex error structures in analysing data.
Competition indices and variance component techniques were applied to 92 Scots pine (Pinus sylvestris L.) -dominated permanent sample plots on drained peatlands in Northern Finland. By quantifying stand, plot, and tree level variation, it was possible to identify the level (stand, plot or tree) at which the explanatory variables contributed to the model. The replication of plots within stands revealed little variation among plots within a single stand but significant variation occurred at stand and tree levels. Positive and negative effects of inter-tree competition are identified by examining simple correlation statistics and the random parameter model.
The model predicts the base diameter of the thickest living branch of a tree growing in a planted or naturally regenerated even-aged stand. A mixed model type was used in which the residual variation was divided into within-stand and between-stand components. The study material consisted of 779 trees measured in 12 plots located in 20 to 35 years old Scots pine (Pinus sylvestris L.) stands (breast height age 10 to 20 years). Branch diameter was closely connected to the breast height diameter of the stem. In a stand of a certain age, competition by close neighbours slightly decreased branch diameter in a given diameter class. According to the model, the greatest difference is between trees subjected to very little competition and those subjected to normal competition. The model was used in simulated stands with varying age, density, and tree arrangement. The simulations showed that trees with rapid diameter growth at young age had thicker branches at a given breast height diameter than trees with slower diameter growth. However, a very slow growth rate did not produce trees with branches thinner than those possessing a medium growth rate.
The PDF includes an abstract in Finnish.
The simulation model consists of a method to generate theoretical Norway spruce (Picea abies (L.) H. Karst.) stands, and a spatial growth model to predict the growth of these stands. The stand generation procedure first predicts the tree diameters from a few stand characteristics and from tree locations. Tree age and height are predicted using spatial models. Spatial growth models were made for both diameter growth and basal area growth. Past growth was used as a predictor in one pair of models and omitted in another pair. The stand generation method and the growth models were utilized in studying the effect of tree arrangement and thinning method on the growth of a Norway spruce stand.
The PDF includes an abstract in Finnish.
The study presents two methods of predicting tree dimensions in a Scots pine (Pinus sylvestris L.) stand if only the location of trees is known. The first method predicts the tree diameter from the spatial location of neighbours. In the second method the diameter distribution of a subarea is estimated from the local stand density. This distribution is then sampled to obtain diameters. In both methods the tree height is predicted with a spatial model on the basis of diameters and locations of trees. The main purpose of the presented models is to generate realistic stands for simulation studies.
The PDF includes an abstract in Finnish.
The effect of grouping on 5-year old volume increment was studied by a simulation technique using spatial growth models estimated in Scots pine (Pinus sylvestris L.) stands in the phase of the first commercial thinning. A total of 24 model stands were regenerated by applying 12 spatial processes for two different diameter distributions. In addition to model stands, 6 different thinnings were simulated in two real stands. The clustering of trees was described with Fisher’s grouping index and by estimating the relative interception of diffuse radiation. In model stands with constant diameter distribution the correlation between the grouping index and volume increment ranged from -0.81 to -0.91. The correlation between volume increment and interception was 0.81–0.83 with one diameter distribution and 0.70 if both distributions were combined. In one thinned stand the correlation between the growth estimate and grouping index varied between -0.33 and 0.76. The correlation between interception and growth was about 0.30 in one stand and 0.72 if both stands were combined. Small irregularities do not decrease the volume production of a young Scots pine stand, but if the clustering is considerable or there are reasonably wide harvest strips, growth will be reduced by 10–20%.
The PDF includes a summary in Finnish.
The effect of competition on the radial growth of Scots pine (Pinus sylvestris L.) was studied in three naturally regenerated stands located in North Karelia, Finland. The competition situation of an individual tree was described with various competition indices which depended on the sizes and distances from the neighbouring trees. One competition index explained about 50% of the variation in 5-year radial growth in one stand. If all stands were combined, one index explained 43.5%, two indices 48.9% and three indices 51.2% of the variation. In one stand, the best competition indices accounted for about 20% of that variation which could not be explained by tree diameter. If all three stands were combined, the best index explained 11% of the residual variation. About 40% of the variation in 5-year radial growth could not be explained by the diameter and competition indices.
The PDF includes an abstract in Finnish.
Two Japanese models regarding the within-stand competition have been reviewed on the basis of relevant literature. Competition-density and 3/2 th power models seem to be applicable also into tree stands. The latter model has been applied into the material obtained from literature. Computations showed consistancy with the results obtained elsewhere in the world. It is concluded that also in Finnish conditions the 3/2 th power law may have great potentials in describing the effects of stand density on tree size.
The PDF includes a summary in English.
In most pine swamp stands on drained peatlands the dwarf-shrubs are rather important biomass producers. The aim of the experiment was to determine the effect of killing off the dwarf-shrub vegetation on the subsequent development of Scots pine (Pinus sylvestris L.) stand. The dwarf-shrub vegetation was killed by means of herbicides. The results show that by removing competition by the dwarf-shrub vegetation on drained pine swamps, it is possible to pass onto the trees at least some of the freed growth potential.
The PDF includes a summary in Finnish.
The aim of this paper was to shape and analyse certain alternatives in the development processes in the organization chains of Finnish forestry. The material was collected by analysing market structures and characteristics of competition with regard to raw wood and forest industry products.
The paper presents two alternative ways to rationalize the organization chains between the forest owner’s organizations and forest industry. In the price mechanism of raw wood originating from Finnish private forests there there has been increasing influence of the central organizations of the private forest owners and forest industry. In their relationship, the model of bilateral monopolistic competition can be chosen as a conceptual framework.
Under bilateral monopoly price is fixed as a result of negotiations between competitive parties, and the position and tactics within the negotiations are of great importance for the negotiating parties. Because of the competition, Finnish forest industry cannot compensate the increase in the production costs by raising independently the export prices of its products. This and the fact that the annual earnings of forest workers are fixed by law to the earnings of the workers in wood-processing industry, will cause pressure on stumpage prices.
In the paper two schemes are outlined. In the Scheme 1 a development alternative is described in which the organization chain of private forest owners is supposed to develop to the industry growing direction. In the Scheme 2 the organization chain of private forest owners is supposed to develop to the organizational orientated direction.
It is concluded that as long as the forest owners’ organizational orientated central organization is too weak to form a monopoly as counterweight to the monopsol of forest industry (except the industries of forest owners), it will consider the industry growing direction superior to the organizational orientated alternative.
The PDF includes a summary in English.
Occurence of buckthorn (Hippophaës rhamnoides L.) in the mainland coast and archipelago of Rauma in the Southwestern Finland was surveyed during 1934-1936. The species is coastal, growing most prominent in the islands of central zone of the archipelago, while it is rare in the outermost archipelago and loses competition to other vegetation in mainland. The main competitors in the innermost islands are black alder (Alnus glutinosa (L.) Gaertn.) and Norway spruce (Picea abies (L.) H. Karst.) and in the outermost islands black alder and common juniper (Juniperus communis L.). Seawater and ice can cause damage to buckthorn, but it resists wind well. The species grows well both on fine and coarse gravel.
The article includes an abstract in German.
Root systems of a Scots pine (Pinus sylvestris L.) stands of seed trees on a Vaccinium sites in Southern Finland were studied by taking soil samples around the seed trees. The results show that root system of an old Scots pine spreads relatively evenly around the tree up to at least 10 meters from the stem. The densest part of the root system is near the stem, which part is often acentric. This is probably due to root competition in the early stages of growth of the tree.
Root systems of the seed trees affect stocking of the site with seedlings and the growth of the seedlings. The root competition can cause, for instance, uneven grouping of the seedlings. It seems that the largest trees of a stand have the most even root system. It is therefore recommended to choose the strongest trees of the stand as seed trees, to ensure even distribution of seedlings.
The Acta Forestalia Fennica issue 61 was published in honour of professor Eino Saari’s 60th birthday.
The PDF includes a summary in German.
The purpose of the investigation was to study the amount, quality and distribution by layers of depth of horizontal roots in Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) stands in Southern Finland. The sample plots included stands on soil varying from sandy to stony, and stands of varying ages from seedling stands to an old stand, in Myrtillus and Vaccinium type forests.
In a Norway spruce stand, the amount of roots increases rapidly and reaches its maximum, about 450 meters/m3, at an age of 100-110 years. In a Scots pine stand the maximum, about 370 m/m3, is reached earlier, at an age of 60-70 years. The root system of pine expands more rapidly than that of spruce. The total length of the horizontal root system of pine amounts to 1,000 m soon after 40 years of growth, of spruce at the age of 60. Later the situation changes, and at the age of 110 the root systems of both species are about the same size, but older trees of spruce have more extensive root system.
Majority of horizontal roots are under 1 mm in diameter. Of the horizontal roots of spruce stands the majority lie in the humus layer and in the topmost mineral soil stratum. Over half of horizontal spruce roots are, thus, at a maximum depth of 5 cm, while majority of the roots of Scots pine lie at maximum in depth of 10 cm. At the same layer grow also the roots of the ground vegetation, which may affect the competition between the species.
The PDF includes a summary in English.
The study is based on observations in a Scots pine (Pinus sylvestris L.) stand on a dry upland forest site in Karhumäki, where a 10-15-year old seedling stand grew under a hold-overs of larger trees that had been left in the site in a previous felling. The root systems of 80-120 cm tall seedlings growing around single mother trees were unearthed. Root maps were drawn of the root systems of 120 seedlings.
No seedlings grew around old, large hold-overs. It seems that seedlings could not compete with their root system. If the hold-overs were stunted in their growth, seedlings grew also under the canopy of the mother tree. 90% of the seedlings had a tap root. Rest of the roots grew horisontally in the topsoil. Around a vigorous mother tree, the seedlings grew their roots away from the mother tree. Hold-overs that had belonged originally to the lower canopy layer of the old forest did not have similar effect on the root orientation of the seedlings. Their roots had been previously affected by trees of higher canopy layer, later removed in the felling.
The PDF includes a summary in German.
The aim of the study was to investigate effect of growth conditions on germination and growth of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings in greenhouse conditions. Germination of seeds becomes markedly slower as the soil temperature decreases. It seems that low temperatures affect more Norway spruce than Scots pine. When temperature rises, the fresh weight of the seedlings increases more in pine seedlings than in spruce seedlings. Accordingly, lower temperatures affect less the weight growth of spruce seedling than that of pine seedlings.
An experiment testing how root competition affect germination showed that adjacent seedlings decrease germination of seeds more than shading with branches. The effect was strongest on pine and spruce seedlings when the shading tree species was fast growing birch (Betula sp.). On the other hand, shading affected most height growth of birch seedlings. Growing space can vary in relatively large range without it affecting greatly tree growth.
The PDF includes a summary in German.
Shifting cultivation, practiced earlier in Finland, was beneficial for grey alder (Alnus incana (L.) Moench). It can produce seeds early and the early growth of the seedlings is fast. Areas where shifting cultivation was intensive, the areas next to the fields were pure alder stands, next circle was Betula sp. dominated, beyond that could be found Scots pine (Pinus sylvestris L.), and finally Norway spruce (Picea abies (L.) H. Karst.). When shifting cultivation ended, Norway spruce became more common. Many young mixed stands had Norway spruce undergrowth and alder overgrowth. The aim of the study was to find out how the stands develop to spruce dominated stands, and how they should be managed.
The density of spruce undergrowth affects the further development of both spruce and alder. The number of alder stems decreases the faster the denser the spruce undergrowth is. Alder overgrowth slow down the early diameter and height growth of spruce compared to pure stands. Also the diameter and height growth of alder remains smaller in mixed stands. The basal area of spruce develops slowly in the beginning, increases significantly by the age of 30, and surpasses the growth of pure spruce stands in Oxalis-Myrtillus site type. Thus, Norway spruce do not suffer from growing in the undergrowth. In the first years, fast growing alder seedlings limits growth of ground vegetation and protects spruce seedlings from frost. Later thinning or removal of alder benefits spruce growth. The density of spruce undergrowth decides how much alder can be leaved in the stand. If the spruce undergrowth is thin, more alder can be left in the stand.
The PDF includes a summary in German.
Norway spruce (Picea abies (L.) H. Karst.) is a species that becomes in Finland over time the dominant species in the sites that are suitable for it. The reason that it covers only a quarter of the forest areas in Finland depends mainly on forest fires. The aim of this review was to discuss the biological factors that affect competition between Scots pine and Norway spruce.
Especially important is the ability to regenerate and grow past seedling stage. There does not seem to be significant differences in the number of good seed and seedling years of the species. Spruce regenerates better on moss covered forest floor than pine. On the other hand, pine seedlings grow faster than spruce seedlings, and tolerate better dry conditions. Consequently, one of the defining biological differences is that Norway spruce needs more humid conditions than Scots pine. Spruce is shown to have greater transpiration than pine. Spruce also has higher site requirements, however, growing as undergrowth, it seems to be better able to compete of the nutrients with the larger trees than pine. It also tolerates shading better. Spruce is less frost tolerant than pine.
The PDF includes a summary in German.
The study presents and describes the abundance and distribution of tree roots in specific stands of heathy forest types in Lapland. The data was collected in the Sodankylä commune.
Due to the shortcomings in the data, conclusions can be drawn only regarding pine forests. The result of study states that the root competition plays an important role in the development of the forests, and most of the other observed phenomena are linked with root competition. The more infertile the soil the vertically and horizontally wider and more abundant the root system. It seems that the abundance of the root system is similar in forest of same fertility class and same density and age.
The aim of the present study was to explain how the Finnish paper industry increased its production and its exports, broadened its markets and managed to show a profit in its activities during the period between the two world wars, despite the restrictive international commercial policies then prevailing, and despite the economic depression of the thirties. Newsprint has been treated as a subject for detailed examination.
The study is based on a comparative investigation of the price received by the paper mills for their paper and the costs of production. Since the market price of paper fell during the twenty years in question, one must examine how the mills responded to the reduction in selling price. Technically the study ranges from the valuation of the standing timber to the handing over of the finished product to the buyer. Between 1929 and 1933 the cost of producing newsprint fell by 387 marks per ton.
The most significant factor in maintaining competitive power was the technical development and increased output brought about in the mills. That alone accounted for half the savings achieved. The reduction in the buying price of wood and in delivery costs accounted for about a third of the difference in production costs, and other factors for the remaining fifth. In addition, the devaluation of the Finnish mark was crucial. Measures taken to reduce costs were effective in so far as the paper mills, with only one or two exceptions, maintained their competitiveness in international markets and managed not only to retain but also to extend their markets.
The PDF includes a summary in English.
In Finland The Central Forestry Board Tapio conducts forest drainage operations on swamps owned mainly by private individuals. This drainage is almost totally financed by the Government either as loans or subsidies. The local contractors have left bids about new forest drainage projects, and the best bid has won the contract. The trend of the average price for forest drains has been declining during the last 11 years although digging costs have increased. The aim of this study was (1) to explain the regional price variation of forest drains made by tractor-diggers and (2) to describe competition among tractor-digger contractors and to measure its effect on prices.
Correlation and regression analyses support the hypothesis that competition among tractor-digger contractors has decreased forest drain prices, especially in 1967. In the course of the last two years this competition effect has been lessening. The most significant other variables explaining price variations were the proportion of winter drainage, length of drainage work done for each participant in the project, and density of drains.
The PDF includes a summary in English.
Ageing and competition reduce trees’ ability to capture resources, which predisposes them to death. In this study, the effect of senescence on the survival probability of Norway spruce (Picea abies (L.) Karst.) was analysed by fitting alternative survival probability models. Different model formulations were compared in the dataset, which comprised managed and unmanaged plots in long-term forest experiments in Finland and Norway, as well as old-growth stands in Finland. Stand total age ranged from 19 to 290 years. Two models were formulated without an age variable, such that the negative coefficient for the squared stem diameter described a decreasing survival probability for the largest trees. One of the models included stand age as a separate independent variable, and three models included an interaction term between stem diameter and stand age. According to the model including stand age and its interaction with stem diameter, the survival probability curves could intersect each other in stands with a similar structure but a different mean age. Models that did not include stand age underestimated the survival rate of the largest trees in the managed stands and overestimated their survival rate in the old-growth stands. Models that included stand age produced more plausible predictions, especially for the largest trees. The results supported the hypothesis that the stand age and senescence of trees decreases the survival probability of trees, and that the ageing effect improves survival probability models for Norway spruce.
The reach of different tree species’ crowns and the velocity of gap closure during the occupation of canopy gaps resulting from mortality and thinning during stand development determine species-specific competition and productivity within forest stands. However, classical dendrometric methods are rather inaccurate or even incapable of time- and cost-effectively measuring 3D tree structure, crown dynamics and space occupation non-destructively. Therefore, we applied terrestrial laser scanning (TLS) in order to measure the structural dynamics at tree and stand level from gap cutting in 2006 until 2012 in pure and mixed stands of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.). In conclusion, our results suggest that Norway spruce invests newly available above-ground resources primarily into DBH as well as biomass growth and indicate a stronger resilience against loss of crown mass induced by mechanical damage. European beech showed a vastly different reaction, investing gains from additional above-ground resources primarily into faster occupation of canopy space. Whether our sample trees were located in pure or mixed groups around the gaps had no significant impact on their behavior during the years after gap cutting.
Crown dimensions are correlated to growth of other parts of a tree and often used as predictors in growth models. The crown-to-bole diameter ratio (CDBDR), which is a ratio of maximum crown width to diameter at breast height (DBH), was modelled using data from permanent sample plots located on Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) stands in different parts of the Czech Republic. Among various tree and stand-level measures evaluated, DBH, height to crown base (HCB), dominant height (HDOM), basal area of trees larger in diameter than a subject tree (BAL), basal area proportion of the species of interest (BAPOR), and Hegyi’s competition index (CI) were found to be significant predictors in the CDBDR model. Random effects were included using the mixed-effects modelling to describe sample plot-level variation. For each species, the mixed-effects model described a larger part of the variation of the CDBDR than nonlinear ordinary least squares model with no trend in the residuals. The spatially explicit mixed-effects model showed more attractive fit statistics [conditional R2 ≈ 0.73 (spruce), 0.78 (beech)] than its spatially inexplicit counterpart [conditional R2 ≈ 0.71 (spruce), 0.76 (beech)]. The model showed that CDBDR increased with increasing HDOM – a measure that combines the stand development stage and site quality – but decreased with increasing HCB and competition (increasing BAL and CI), and decreasing proportions of the species of interest (increasing BAPOR). For both species, the spatially explicit mixed-effects model should be a preferred choice for a precise prediction of the CDBDR. The CDBDR model will have various management implications such as determination of spacing, stand basal area, stocking, and planning of appropriate species mixture.
Models attempting to predict treeline shifts in changing climates must include the relevant ecological processes in sufficient detail. A previous correlative model study has pointed to nutrients, competition, and temperature as the most important factors shaping the treelines of Pinus sylvestris L., Picea abies (L.) H. Karst. and Betula pubescens Ehrh. in Finnish Lapland. Here, we applied a widely used process-based dynamic vegetation model (LPJ-GUESS) to (i) test its capability to simulate observed spatial and temporal patterns of the main tree species in Finnish Lapland, and (ii) to explore the model representation of important processes in order to guide further model development. A European parameterization of LPJ-GUESS overestimated especially P. abies biomass and the species’ northern range limit. We identified implemented processes to adjust (competition, disturbance) and crucial processes in boreal forests to include (nutrient limitation, forest management) which account for the model’s failure to (edaphically) restrict P. abies in Finnish Lapland and the resulting species imbalance. Key competitive mechanisms are shade and drought tolerance, nutrient limitation, fire resistance, and susceptibility to disturbances (storm, herbivory) which we discussed with respect to boreal ecology and promising model developments to provide a starting point for future model development.