Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'tree architecture'

Category : Article

article id 5626, category Article
Winfried Kurth, Branislav Sloboda. (1997). Growth grammars simulating trees – an extension of L-systems incorporating local variables and sensitivity. Silva Fennica vol. 31 no. 3 article id 5626. https://doi.org/10.14214/sf.a8527
Keywords: tree growth; competition; allocation; morphology; tree architecture; L-systems; sensitivity; tree structure
Abstract | View details | Full text in PDF | Author Info

The rule-based formal language of "stochastic sensitive growth grammars" was designed to describe algorithmically the changing morphology of forest trees during their lifetime under the impact of endogenous and exogenous factors, and to generate 3-D simulations of tree structures in a systematic manner. The description in the form of grammars allows the precise specification of structural models with functional components. These grammars (extended L-systems) can be interpreted by the software GROGRA (Growth grammar interpreter) yielding time series of attributed 3-D structures representing plants. With some recent extensions of the growth-grammar language (sensitive functions, local variables) it is possible to model environmental control of shoot growth and some simple allocation strategies, and to obtain typical competition effects in tree stands qualitatively in the model.

  • Kurth, E-mail: wk@mm.unknown (email)
  • Sloboda, E-mail: bs@mm.unknown
article id 5625, category Article
Thomas Früh. (1997). Simulation of water flow in the branched tree architecture. Silva Fennica vol. 31 no. 3 article id 5625. https://doi.org/10.14214/sf.a8526
Keywords: drought stress; modelling; branches; tree architecture; water flow; finite difference method; hydraulic network; numerical model; hydraulic system
Abstract | View details | Full text in PDF | Author Info

The model HYDRA, which simulates water flow in the branched tree architecture, is characterized. Empirical studies of the last decades give strong evidence for a close structure-function linkage in the case of tree water flow. Like stomatal regulation, spatial patterns of leaf specific conductivity can be regarded as a strategy counteracting conductivity losses, which may arise under drought. Branching-oriented water flow simulation may help to understand how damaging and compensating mechanisms interact within the hydraulic network of trees. Furthermore, a coupling of hydraulic to morphological modelling is a prerequisite if water flow shall be linked to other processes. Basic assumptions of the tree water flow model HYDRA are mass conservation, Darcy's law and the spatial homogeneity of capacitance and axial conductivity. Soil water potential is given as a one-sided border condition. Water flow is driven by transpiration. For unbranched regions these principles are condensed to a nonlinear diffusion equation, which serves as a continuous reference for the discrete method tailored to the specific features of the hydraulic network. The mathematical derivation and model tests indicate that the realization of the basic assumptions is reproducible and sufficiently exact. Moreover, structure and function are coupled in a flexible and computationally efficient manner. Thus, HYDRA may serve as a tool for the comparative study of different tree architectures in terms of hydraulic function.

  • Früh, E-mail: tf@mm.unknown (email)
article id 5624, category Article
Hervé Sinoquet, Christophe Godin, Pierre Rivet. (1997). Assessment of the three-dimensional architecture of walnut trees using digitising. Silva Fennica vol. 31 no. 3 article id 5624. https://doi.org/10.14214/sf.a8525
Keywords: digitising; crown structure; tree architecture; Juglans regia; topology; geometry; shoot level; shoot morphology
Abstract | View details | Full text in PDF | Author Info

A method for the measurement of the three-dimensional (3D) architecture of trees was applied to describe two 20-year-old walnut trees, one of them is a timber tree while the other is a fruit tree. The method works at the shoot level and simultaneously describes the plant topology, the plant geometry and the shoot morphology. The method uses a 3D digitiser (3SPACE® FASTRAK®, Polhemus Inc.) associated with software DiplAmi designed for digitiser control and data acquisition management. Plant images may be reconstructed from the data set by using the ray tracing software POV-Ray. Visual comparison between photographs of the walnut trees and images synthesised from digitising was satisfactory. Distribution of basal shoot diameter, as well as leaf area and fruit distributions for both the timber and the fruit tree were non-uniformly distributed in the crown volume. Gradients were likely to be related to the light distribution within the tree. This is in agreement with previous experimental results on several tree species, and also with the predictions of tree architecture models based on light-vegetation interactions.

  • Sinoquet, E-mail: hs@mm.unknown (email)
  • Godin, E-mail: cg@mm.unknown
  • Rivet, E-mail: pr@mm.unknown
article id 5385, category Article
Timo Kuuluvainen. (1989). Branching dynamics in young Scots pine. Silva Fennica vol. 23 no. 3 article id 5385. https://doi.org/10.14214/sf.a15542
Keywords: Pinus sylvestris; biomass production; branching; tree architecture; bifuraction; modular construction; shoot demography
Abstract | View details | Full text in PDF | Author Info

The development of shoot number and shoot properties was examined in successive shoot cohorts of young widely-spaced Scots pine trees (Pinus sylvestris L.) growing in a progeny trial. This was accomplished by reconstructing the branching process of the trees over a period of five years, from tree age 4 to 8. During this time the number of shoots in successive shoot cohorts increased rapidly, while at the same time the mean shoot length decreased. The decrease in shoot lengths from older to younger shoots was accompanied by a decline in the bifuraction frequency of the shoots. In general, rapid changes occurred in the branching characteristics during the yearly development of the trees. The variation in the branching characteristics was reflected in the development of the architecture and biomass production of the trees.

The PDF includes an abstract in Finnish.

  • Kuuluvainen, E-mail: tk@mm.unknown (email)

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles