Current issue: 58(4)

Under compilation: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'model accuracy'

Category : Article

article id 5590, category Article
Heikki Hänninen, Seppo Kellomäki, Ilkka Leinonen, Tapani Repo. (1996). Overwintering and productivity of Scots pine in a changing climate. Silva Fennica vol. 30 no. 2–3 article id 5590. https://doi.org/10.14214/sf.a9235
Keywords: Pinus sylvestris; climate change; ecosystems; frost damage; phenology; forest ecology; gap-type model; model accuracy; model realism; overvintering
Abstract | View details | Full text in PDF | Author Info

The productivity of Scots pine (Pinus sylvestris L.) under changing climatic conditions in the southern part of Finland was studied by scenario analysis with a gap-type forest ecosystem model. Standard simulations with the model predicted an increased rate of growth and hence increased productivity as a result of climatic warming. The gap-type model was refined by introducing an overwintering sub-model describing the annual growth cycle, frost hardiness, and frost damage of the trees. Simulations with the refined gap-type model produced results conflicting with those of the standard simulation, i.e., drastically decreased productivity caused by mortality and growth-reducing damage due to premature dehardening in the changing climate. The overwintering sub-model was tested with frost hardiness data from Scots pine saplings growing at their natural site 1) under natural conditions and 2) under elevated temperature condition, both in open-top chambers. The model predicted the frost hardiness dynamics quite accurately for the natural conditions while underestimating the frost hardiness of the saplings for the elevated temperature conditions. These findings show that 1) the overwintering sub-model requires further development, and 2) the possible reduction of productivity caused by frost damage in a changing climate is less drastic than predicted in the scenario analysis. The results as a whole demonstrated the need to consider the overwintering of trees in scenario analysis carried out with ecosystem model for boreal conditions. More generally, the results revealed a problem that exists in scenario analysis with ecological models: the accuracy of a model in predicting the ecosystem functioning under present climatic condition does not guarantee the realism of the model, nor for this reason the accuracy for predicting the ecosystem functioning under changing climatic conditions. This finding calls for the continuous rigorous experimental testing of ecological models used for assessing the ecological implications of climatic change.

  • Hänninen, E-mail: hh@mm.unknown (email)
  • Kellomäki, E-mail: sk@mm.unknown
  • Leinonen, E-mail: il@mm.unknown
  • Repo, E-mail: tr@mm.unknown

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles