Current issue: 58(2)

Under compilation: 58(3)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'bryophytes'

Category : Article

article id 5154, category Article
Satu Huttunen, Sinikka Kallio, Marketta Karhu. (1981). The effect of air pollution on transplanted mosses. Silva Fennica vol. 15 no. 4 article id 5154. https://doi.org/10.14214/sf.a15381
Keywords: bryophytes; Hylocomnium splendens; Pleurozium schreberi; air pollution; bioindicators; nitrogen fixation capacity; blue-green algae; surface structure; stress respiration
Abstract | View details | Full text in PDF | Author Info

The use of forest mosses as bioindicators was tested with transplanted experiments. One transplantation experiment was made to study effects of air pollutants on two forest moss species, Hylocomnium splendens (Hedw.) Schimp. and Pleurozium schreberi (Willd. ex Brid.) Mitt. Another transplantation was used to study the nitrogen fixation capacity of blue-green algae in the Hylocomnium and Pleurozium moss layers. The surface structure of the moss species was studied by scanning electron microscopy. The air pollution induced changes in the surface structure of moss cells were observable soon after the transplantation. In polluted industrial areas the fertilizing effect of air-borne nitrogen compounds increased the photosynthetic activity of mosses before their destruction. Stress respiration was also observable in polluted areas. The nitrogen fixing capacity decreased or was almost inhibited in all the air-polluted environments.

  • Huttunen, E-mail: sh@mm.unknown (email)
  • Kallio, E-mail: sk@mm.unknown
  • Karhu, E-mail: mk@mm.unknown
article id 5144, category Article
Lennart Folkeson. (1981). Impact of air-borne copper and zinc pollution on lichen and bryophyte vegetation near a brass foundry. Silva Fennica vol. 15 no. 4 article id 5144. https://doi.org/10.14214/sf.a15371
Keywords: bryophytes; lichen; damage; copper; coniferous forests; Hylocomnium splendens; mosses; air pollution; environmental impact; brass foundry; Hypogymnia physodes; zinc
Abstract | View details | Full text in PDF | Author Info

Air-borne Cu and Zn from a brass foundry at Gusum, SE Sweden, have considerably disturbed the lichen and bryophyte vegetation in the coniferous forest environment. The occurrence of lichens on Norway spruce twigs decreased rapidly with increasing Cu concentrations in Hypogymnia physodes above 90 ppm (background value 10–15). The epiphytic vegetation is reduced within 2–3 km from the foundry. Only stunted individuals occur in the close vicinity of the pollution source.

The cover of one of the quantitatively most important mosses, Hylocomnium splendens, is greatly reduced by the heavy-metal deposition. Cover values of 20–50% are not uncommon in distant sites (Cu concentration 15–35 ppm). There is a significant negative correlation between Cu concentration in the moss and its cover. The moss cannot survive much more than ca. 130 ppm Cu (and 360 ppm Zn). Live individuals are no more found within 1.5 km from the foundry.

  • Folkeson, E-mail: lf@mm.unknown (email)

Category : Article

article id 7105, category Article
J. P. Norrlin. (1923). Overview of moos and lichen in Tornio-Muonio and the bordering parts of Kemi-Lappmark in Finnish Lapland. Acta Forestalia Fennica vol. 23 no. 6 article id 7105. https://doi.org/10.14214/aff.7105
Keywords: bryophytes; lichen; vegetation; Lapland; moos; Lichenes; Bryophyta
Abstract | View details | Full text in PDF | Author Info

The article begins on the page 91/122 of the PDF file.

The data has been collected during summer 1867. It examines the moos and lichen species in for regions of Lapland: spruce region, pine region, birch region and fjeld region. The division of the regions is related to the climatic and biological conditions of areas, the first mentioned being the most southern and still suitable e.g. for many grasses. Respective regions have been presented with their general characters and list of species. Finally the findings of different regions are compared.   

  • Norrlin, E-mail: jn@mm.unknown (email)

Category : Research article

article id 10598, category Research article
Argo Orumaa, Kajar Köster, Arvo Tullus, Tea Tullus, Marek Metslaid. (2022). Forest fires have long-term effects on the composition of vascular plants and bryophytes in Scots pine forests of hemiboreal Estonia. Silva Fennica vol. 56 no. 1 article id 10598. https://doi.org/10.14214/sf.10598
Keywords: disturbance; bryophytes; understorey vegetation; vascular plants; hemiboreal forest; fire chronosequence; wildfire
Highlights: We recorded 31 vascular plant and 39 bryophyte species in a chronosequence of Scots pine stands with 12–183 years since fire; Time since fire affected the compositional patterns of vascular plants and bryophytes; The richness of liverworts was higher in recently burned stands due to the presence of Cephaloziella spp.; The richness of dwarf-shrubs increased with longer period since fire.
Abstract | Full text in HTML | Full text in PDF | Author Info

Since fire frequency is expected to increase globally due to climate change, it is important to understand its effects on forest ecosystems. We studied the long-term patterns in species diversity, cover and composition of vascular plants and bryophytes after forest fire and the site-related factors behind them. Research was carried out in northwestern Estonia, using a chronosequence of Scots pine (Pinus sylvestris L.) stands, located on nutrient poor sandy soils, where fires had occurred 12, 23, 38, 69, 80 and 183 years ago. In every stand three 100 m2 vegetation plots were established to collect floristic and environmental information. The effects on floristic characteristics of time since fire, light, and soil variables were evaluated with linear mixed models, followed by backward variable selection. Compositional variation was analysed with non-metric multidimensional scaling, Multi-response Permutation Procedures, and Indicator Species Analysis. Altogether, 31 vascular plant and 39 bryophyte species were found in vegetation plots. The cover of the vascular plant and bryophyte layers increased with a longer time since fire. Soil and light variables impacted the richness of several vascular plant and bryophyte groups, whereas only the richness of liverworts and dwarf-shrubs correlated with time since fire. Considerable compositional differences were observed in vascular plant and bryophyte assemblages between recently vs. long-time ago burned stands. To conclude, time since fire significantly impacted compositional patterns of vascular plants and bryophytes in pine forests on nutrient poor soils, although time-related trends in species richness were less evident.

  • Orumaa, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia E-mail: argo.orumaa@emu.ee (email)
  • Köster, Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111 (Yliopistokatu 7), 80130, Joensuu, Finland E-mail: kajar.koster@helsinki.fi
  • Tullus, Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51003, Estonia E-mail: arvo.tullus@ut.ee
  • Tullus, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia E-mail: tea.tullus@emu.ee
  • Metslaid, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia E-mail: marek.metslaid@emu.ee
article id 82, category Research article
Nicole J. Fenton, Yves Bergeron. (2011). Dynamic old-growth forests? A case study of boreal black spruce forest bryophytes. Silva Fennica vol. 45 no. 5 article id 82. https://doi.org/10.14214/sf.82
Keywords: disturbances; old-growth forest; succession; boreal; bryophytes; climax; gap dynamics
Abstract | View details | Full text in PDF | Author Info
Old-growth forests have sparked significant interest over the last twenty years and definitions have evolved from structure based to process based, acknowledging the diversity of forests that could be considered old growth. However studies frequently group all forests over a certain age into a single type, negating the dynamic processes that create old growth. In this study we examine a 2350-year chronosequence in boreal black spruce forests in northwestern Quebec to determine whether continued community change can be observed in the bryophyte layer. Bryophytes dominate the understory of boreal forests and influence ecosystem functioning, particularly in paludified forests where production exceeds decomposition in the organic layer. Community composition and richness changed throughout the chronosequence with no evidence of a steady state associated with an old-growth phase. In contrast the bryophyte community continued to evolve with multiple phases being evident. These results suggest that old-growth forests on the Clay Belt of northwestern Quebec and northeastern Ontario, Canada, should be regarded as part of the continuous gradient in forest development rather than a single state. This complicates conservation of these forests as multiple phases should be considered when planning forest reserves.
  • Fenton, Université du Québec en Abitibi-Témiscamingue, 445 Boulevard de l’Université, Rouyn-Noranda, Québec, Canada J9X 4E5 E-mail: nicole.fenton@uqat.ca (email)
  • Bergeron, Université du Québec en Abitibi-Témiscamingue, 445 Boulevard de l’Université, Rouyn-Noranda, Québec, Canada J9X 4E5 E-mail: yb@nn.ca

Category : Research note

article id 1321, category Research note
Sofia Bäcklund, Mari T. Jönsson, Joachim Strengbom, Göran Thor. (2015). Composition of functional groups of ground vegetation differ between planted stands of non-native Pinus contorta and native Pinus sylvestris and Picea abies in northern Sweden. Silva Fennica vol. 49 no. 2 article id 1321. https://doi.org/10.14214/sf.1321
Keywords: boreal forests; bryophytes; managed forests; introduced species; exotics; lichens; vascular plants
Highlights: Differences in ground vegetation patterns can be linked to tree species, forest stand age and differences in canopy cover; Vascular plant cover was higher in stands of P. contorta than in stands of both native tree species; The overall differences and similarities between P. contorta and the two native conifers were not consistent over the different age classes.
Abstract | Full text in HTML | Full text in PDF | Author Info
Intensified forestry increases the interest in replacing native tree species with fast growing non-native species. However, consequences for native biodiversity and ecosystem functioning are poorly understood. We compared cover and composition of major functional groups of ground vegetation between planted stands of non-native Pinus contorta Dougl. var. latifolia Engelm. and native conifers Pinus sylvestris L. and Picea abies (L.) H. Karst. in northern boreal Sweden. We quantified the ground cover of lichens, bryophytes, vascular plants and ground without vegetation (bare ground) in 96 stands covering three different age classes (15, 30 and 85 years old). Our study revealed differences in ground vegetation patterns between non-native and native managed forests, and that these differences are linked to stand age and differences in canopy cover. Total vascular plant cover increased with increasing stand age for all tree species, with P. contorta stands having higher cover than both native conifers. The ground cover of lichens was, although generally low, highest in stands of Pinus sylvestris. P. abies stands had a lower cover of vascular plants, but bare ground was more common compared with P. contorta. Our results suggest that the use of P. contorta as an alternative tree species in Fennoscandian forestry will influence native ground vegetation patterns. This influence is likely to change with time and future research should consider both temporal and landscape-scale effects from shifting tree-species dominance to Pinus contorta and other non-native tree species.
  • Bäcklund, Department of Ecology, Swedish University of Agricultural Sciences, P.O. Box 7044, SE-750 07 Uppsala, Sweden E-mail: sofia.backlund@slu.se (email)
  • Jönsson,  The Swedish Species Information Centre, P.O. Box 7007, SE-750 07 Uppsala, Sweden E-mail: mari.jonsson@slu.se
  • Strengbom, Department of Ecology, Swedish University of Agricultural Sciences, P.O. Box 7044, SE-750 07 Uppsala, Sweden E-mail: joachim.strengbom@slu.se
  • Thor, Department of Ecology, Swedish University of Agricultural Sciences, P.O. Box 7044, SE-750 07 Uppsala, Sweden E-mail: goran.thor@slu.se

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles