Current issue: 58(5)
Since fire frequency is expected to increase globally due to climate change, it is important to understand its effects on forest ecosystems. We studied the long-term patterns in species diversity, cover and composition of vascular plants and bryophytes after forest fire and the site-related factors behind them. Research was carried out in northwestern Estonia, using a chronosequence of Scots pine (Pinus sylvestris L.) stands, located on nutrient poor sandy soils, where fires had occurred 12, 23, 38, 69, 80 and 183 years ago. In every stand three 100 m2 vegetation plots were established to collect floristic and environmental information. The effects on floristic characteristics of time since fire, light, and soil variables were evaluated with linear mixed models, followed by backward variable selection. Compositional variation was analysed with non-metric multidimensional scaling, Multi-response Permutation Procedures, and Indicator Species Analysis. Altogether, 31 vascular plant and 39 bryophyte species were found in vegetation plots. The cover of the vascular plant and bryophyte layers increased with a longer time since fire. Soil and light variables impacted the richness of several vascular plant and bryophyte groups, whereas only the richness of liverworts and dwarf-shrubs correlated with time since fire. Considerable compositional differences were observed in vascular plant and bryophyte assemblages between recently vs. long-time ago burned stands. To conclude, time since fire significantly impacted compositional patterns of vascular plants and bryophytes in pine forests on nutrient poor soils, although time-related trends in species richness were less evident.