Current issue: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Argo Orumaa

Category : Research article

article id 10598, category Research article
Argo Orumaa, Kajar Köster, Arvo Tullus, Tea Tullus, Marek Metslaid. (2022). Forest fires have long-term effects on the composition of vascular plants and bryophytes in Scots pine forests of hemiboreal Estonia. Silva Fennica vol. 56 no. 1 article id 10598. https://doi.org/10.14214/sf.10598
Keywords: disturbance; bryophytes; understorey vegetation; vascular plants; hemiboreal forest; fire chronosequence; wildfire
Highlights: We recorded 31 vascular plant and 39 bryophyte species in a chronosequence of Scots pine stands with 12–183 years since fire; Time since fire affected the compositional patterns of vascular plants and bryophytes; The richness of liverworts was higher in recently burned stands due to the presence of Cephaloziella spp.; The richness of dwarf-shrubs increased with longer period since fire.
Abstract | Full text in HTML | Full text in PDF | Author Info

Since fire frequency is expected to increase globally due to climate change, it is important to understand its effects on forest ecosystems. We studied the long-term patterns in species diversity, cover and composition of vascular plants and bryophytes after forest fire and the site-related factors behind them. Research was carried out in northwestern Estonia, using a chronosequence of Scots pine (Pinus sylvestris L.) stands, located on nutrient poor sandy soils, where fires had occurred 12, 23, 38, 69, 80 and 183 years ago. In every stand three 100 m2 vegetation plots were established to collect floristic and environmental information. The effects on floristic characteristics of time since fire, light, and soil variables were evaluated with linear mixed models, followed by backward variable selection. Compositional variation was analysed with non-metric multidimensional scaling, Multi-response Permutation Procedures, and Indicator Species Analysis. Altogether, 31 vascular plant and 39 bryophyte species were found in vegetation plots. The cover of the vascular plant and bryophyte layers increased with a longer time since fire. Soil and light variables impacted the richness of several vascular plant and bryophyte groups, whereas only the richness of liverworts and dwarf-shrubs correlated with time since fire. Considerable compositional differences were observed in vascular plant and bryophyte assemblages between recently vs. long-time ago burned stands. To conclude, time since fire significantly impacted compositional patterns of vascular plants and bryophytes in pine forests on nutrient poor soils, although time-related trends in species richness were less evident.

  • Orumaa, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia E-mail: argo.orumaa@emu.ee (email)
  • Köster, Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111 (Yliopistokatu 7), 80130, Joensuu, Finland E-mail: kajar.koster@helsinki.fi
  • Tullus, Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51003, Estonia E-mail: arvo.tullus@ut.ee
  • Tullus, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia E-mail: tea.tullus@emu.ee
  • Metslaid, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia E-mail: marek.metslaid@emu.ee

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles