Current issue: 58(3)

Under compilation: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'understorey vegetation'

Category : Article

article id 7638, category Article
Jussi Kuusipalo. (1985). An ecological study of upland forest site classification in southern Finland. Acta Forestalia Fennica no. 192 article id 7638. https://doi.org/10.14214/aff.7638
Keywords: understorey vegetation; ecosystem; soil properties; humus layer; fertility; forest types; forest vegetation; ecological site classification; sub-soil
Abstract | View details | Full text in PDF | Author Info

The vegetation and number of physical and chemical soil properties were studied on a random sample of closed upland forest stands in Southern Finland. The material consists of a total of 410 sample plots. Two-way indicator species analysis (TWINSPAN) was carried out in order to produce a hierarchical clustering of samples on the basis of the vegetation data. Discriminant analysis and analysis of variance were applied in order to find environmental correlations of the vegetation clustering.

The vegetation was found to indicate the nutrient regime of the humus layer well, but to a less extent the properties of the sub-soil. The understorey vegetation was found to be jointly dependent on the site fertility and on the properties of the tree stand, especially on the tree species composition. Although the forest vegetation appears to be distributed rather continuously along an axis of increasing site fertility, relatively unambiguous classification can be based on the appearance of indicator species and species groups.

The results of the study were interpreted as indication that operational site classification done using the vegetation is rather good method for classification in closed forest stands. Different methods produce relatively consistent, natural and ecologically interpretable classifications. The results also imply that the vegetation cover and the humus layer develop concurrently during the development of the ecosystem, but the differentiation of the site type is regulated simultaneously by a number of interacting factors ranging from mineralogical properties of the parent material to the topographical exposition of the site. As the plant cover depicts all these primary factors simultaneously, only a relatively rough ecological site classification can be based on the vegetation.

The PDF includes a summary in Finnish.

  • Kuusipalo, E-mail: jk@mm.unknown (email)

Category : Research article

article id 10598, category Research article
Argo Orumaa, Kajar Köster, Arvo Tullus, Tea Tullus, Marek Metslaid. (2022). Forest fires have long-term effects on the composition of vascular plants and bryophytes in Scots pine forests of hemiboreal Estonia. Silva Fennica vol. 56 no. 1 article id 10598. https://doi.org/10.14214/sf.10598
Keywords: disturbance; bryophytes; understorey vegetation; vascular plants; hemiboreal forest; fire chronosequence; wildfire
Highlights: We recorded 31 vascular plant and 39 bryophyte species in a chronosequence of Scots pine stands with 12–183 years since fire; Time since fire affected the compositional patterns of vascular plants and bryophytes; The richness of liverworts was higher in recently burned stands due to the presence of Cephaloziella spp.; The richness of dwarf-shrubs increased with longer period since fire.
Abstract | Full text in HTML | Full text in PDF | Author Info

Since fire frequency is expected to increase globally due to climate change, it is important to understand its effects on forest ecosystems. We studied the long-term patterns in species diversity, cover and composition of vascular plants and bryophytes after forest fire and the site-related factors behind them. Research was carried out in northwestern Estonia, using a chronosequence of Scots pine (Pinus sylvestris L.) stands, located on nutrient poor sandy soils, where fires had occurred 12, 23, 38, 69, 80 and 183 years ago. In every stand three 100 m2 vegetation plots were established to collect floristic and environmental information. The effects on floristic characteristics of time since fire, light, and soil variables were evaluated with linear mixed models, followed by backward variable selection. Compositional variation was analysed with non-metric multidimensional scaling, Multi-response Permutation Procedures, and Indicator Species Analysis. Altogether, 31 vascular plant and 39 bryophyte species were found in vegetation plots. The cover of the vascular plant and bryophyte layers increased with a longer time since fire. Soil and light variables impacted the richness of several vascular plant and bryophyte groups, whereas only the richness of liverworts and dwarf-shrubs correlated with time since fire. Considerable compositional differences were observed in vascular plant and bryophyte assemblages between recently vs. long-time ago burned stands. To conclude, time since fire significantly impacted compositional patterns of vascular plants and bryophytes in pine forests on nutrient poor soils, although time-related trends in species richness were less evident.

  • Orumaa, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia E-mail: argo.orumaa@emu.ee (email)
  • Köster, Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111 (Yliopistokatu 7), 80130, Joensuu, Finland E-mail: kajar.koster@helsinki.fi
  • Tullus, Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51003, Estonia E-mail: arvo.tullus@ut.ee
  • Tullus, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia E-mail: tea.tullus@emu.ee
  • Metslaid, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia E-mail: marek.metslaid@emu.ee
article id 423, category Research article
Olle Rosenberg, Staffan Jacobson. (2004). Effects of repeated slash removal in thinned stands on soil chemistry and understorey vegetation. Silva Fennica vol. 38 no. 2 article id 423. https://doi.org/10.14214/sf.423
Keywords: carbon; nitrogen; thinning; base cations; soil chemistry; understorey vegetation; whole-tree harvesting
Abstract | View details | Full text in PDF | Author Info
The increased interest in harvesting logging residues as a source of bio-energy has led to concerns about the potentially adverse long-term impact of the practice on site productivity. The aim of this study was to examine the effects on soil chemistry (pH, C, N and AL-extractable P, K, Ca and Mg) in three different soil layers (FH, 0–5 cm and 5–10 cm mineral soil) and understorey vegetation after the second removal of logging residues in whole-tree thinned stands. The study was performed at four different sites, established in the period 1984–87, representing a range of different climatic and soil conditions: a very fertile Norway spruce (Picea abies (L.) Karst.) site in south-western Sweden and three Scots pine (Pinus sylvestris L.) sites located in south, south-central and central Sweden. The effects of whole-tree thinning on soil chemistry and understorey vegetation were generally minor and variable. Across all sites the concentrations of Ca and Mg were significantly lower when slash was removed.
  • Rosenberg, Skogforsk – The Forestry Research Institute of Sweden, Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail: olle.rosenberg@skogforsk.se (email)
  • Jacobson, Skogforsk – The Forestry Research Institute of Sweden, Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail: sj@nn.se

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles