In producing time series of soil properties, there are many technical and statistical problems which need to be taken into account when sampling and analysing the measurement data. In field the reliable localization of sample plots and the precise distinction of different soil layers are important to reduce the variance caused by the sampling procedure. In laboratory the use of same extraction salt, sample pretreatment procedure and filter paper throughout a measurement series is important. The remarkable small-scale variation within a sampling plot leads to a need of a large number of samples to be collected.
In this study, no trends attributable to soil acidification in the contents of exchangeable base cations could be found among the years 1982, 1985 and 1988. However, in eluvial and illuvial layers the pH decreased and the content of extractable H+ increased during this period. In illuvial layer also the content of extractable aluminium increased.
The PDF includes an abstract in Finnish.
Transects from upland to peatland sites were laid out so as to encounter a wide range of nutritional and hydrological conditions and volumetric soil samples were taken at 20 m intervals. For organic material, in particular peats, the correlation of ignition loss with CEC and total N were clearly higher when the variables were expressed volumetrically. The volumetric expression of variables made comparison of soils with varying organic matter contents possible. In preliminary analyses of the relationships between soil variables and dominant height of the tree stand on mineral soil sites volumetric exchangeable bases, pH and C/N -ratio in the raw humus layer showed a significant correlation.
The PDF includes a summary in Finnish.
After critically reviewing earlier studies on soil properties and their influence on forest growth and yield, it seems that defining the forest yield could be possible by means of soil properties. To be able to do so, the site needs to be defined and delineated in some other way. It is also necessary to decide the right soil properties to study for the purpose.
For the classification of forest sites the results of soil analyses need to be compared with growth and yield data from the site. To further the practice of classification of forest sites by means of soil studies, four aspects need to be taken into account:
1) the site needs to be delineated beforehand according its vegetation, preferable with Cajander’s forest type classification
2) the experiments about soil needs to be done for as many properties as possible
3) the studied sites need to be as representative as possible in their class
4) there are as many samples for one site as possible studied
The volume 34 of Acta Forestalia Fennica is a jubileum publication of professor Aimo Kaarlo Cajander.
The vegetation and number of physical and chemical soil properties were studied on a random sample of closed upland forest stands in Southern Finland. The material consists of a total of 410 sample plots. Two-way indicator species analysis (TWINSPAN) was carried out in order to produce a hierarchical clustering of samples on the basis of the vegetation data. Discriminant analysis and analysis of variance were applied in order to find environmental correlations of the vegetation clustering.
The vegetation was found to indicate the nutrient regime of the humus layer well, but to a less extent the properties of the sub-soil. The understorey vegetation was found to be jointly dependent on the site fertility and on the properties of the tree stand, especially on the tree species composition. Although the forest vegetation appears to be distributed rather continuously along an axis of increasing site fertility, relatively unambiguous classification can be based on the appearance of indicator species and species groups.
The results of the study were interpreted as indication that operational site classification done using the vegetation is rather good method for classification in closed forest stands. Different methods produce relatively consistent, natural and ecologically interpretable classifications. The results also imply that the vegetation cover and the humus layer develop concurrently during the development of the ecosystem, but the differentiation of the site type is regulated simultaneously by a number of interacting factors ranging from mineralogical properties of the parent material to the topographical exposition of the site. As the plant cover depicts all these primary factors simultaneously, only a relatively rough ecological site classification can be based on the vegetation.
The PDF includes a summary in Finnish.