Current issue: 58(5)
The woodland mosses Pleurozia shcreberi (Willd. ex Brid.) Mitt. and Hylocomnium splendens (Hedw.) Schimp. were used in air pollution monitoring. During late summer and autumn 1977, 44 samples of Pleurozia shcreberi were collected in semi-open coniferous forests from Southern Finland (60°N) to Northern Finland and Northern Norway (70°N). Additional 26 samples of Hylocomnium splendens were collected in similar places south of 61°30’N. Analysis of both moss species revealed decreasing concentration gradients from south to north for Cu, Fe, Pb and Zn. Conversely, Mn and Mg levels increased with latitude, while Ca did not change significantly. Some decreasing west to east concentration gradients for Cu, Zn and Pb were measured in P. schreberi and in H. splendends collected from Southern Finland.
A comparison between these two mosses showed significant differences in Cu content (ave. 22% higher in H. splendends) and Zn content (ave. 8% higher in P. schreberi). However, the differences were considered minor in relation to regional differences in Finland.
In local study of emissions from the Koverhar steel works in Southern Finland, Fe and Zn concentrations in P. schreberi and H. splendens were found to decrease significantly with increasing distance up to 6 kilometres north and south of the source.
The PDF includes a summary in Finnish.
The use of forest mosses as bioindicators was tested with transplanted experiments. One transplantation experiment was made to study effects of air pollutants on two forest moss species, Hylocomnium splendens (Hedw.) Schimp. and Pleurozium schreberi (Willd. ex Brid.) Mitt. Another transplantation was used to study the nitrogen fixation capacity of blue-green algae in the Hylocomnium and Pleurozium moss layers. The surface structure of the moss species was studied by scanning electron microscopy. The air pollution induced changes in the surface structure of moss cells were observable soon after the transplantation. In polluted industrial areas the fertilizing effect of air-borne nitrogen compounds increased the photosynthetic activity of mosses before their destruction. Stress respiration was also observable in polluted areas. The nitrogen fixing capacity decreased or was almost inhibited in all the air-polluted environments.
Air-borne Cu and Zn from a brass foundry at Gusum, SE Sweden, have considerably disturbed the lichen and bryophyte vegetation in the coniferous forest environment. The occurrence of lichens on Norway spruce twigs decreased rapidly with increasing Cu concentrations in Hypogymnia physodes above 90 ppm (background value 10–15). The epiphytic vegetation is reduced within 2–3 km from the foundry. Only stunted individuals occur in the close vicinity of the pollution source.
The cover of one of the quantitatively most important mosses, Hylocomnium splendens, is greatly reduced by the heavy-metal deposition. Cover values of 20–50% are not uncommon in distant sites (Cu concentration 15–35 ppm). There is a significant negative correlation between Cu concentration in the moss and its cover. The moss cannot survive much more than ca. 130 ppm Cu (and 360 ppm Zn). Live individuals are no more found within 1.5 km from the foundry.
The aim of the present paper was to study the annual production of Pleurozium schreberi (Brid.) Mitt., Hylocomnium splendens (Hedw.) B.S.G and Dicranum polysetum Sw. as a function of light available for photosynthesis. The productivity of the above moss species is studied using the harvested quadrats method in Norway spruce (Picea abies) stands of the Myrtillus site type representing different stand density classes (basal area from 0 to 34 m2/ha) in Southern Finland.
The annual production of each species in different stands was correlated with the amount of light available for photosynthesis i.e. with the photosynthetic production. Functions for the dependence of productivity on light conditions were produced for each species. The individual functions and their ecological significance is discussed. The adaptation of each species to low light intensity is evident since no meaningful addition to production takes place when the photosynthetic light ratio reaches values greater than 0.3–0.4. In other words, the level of photosynthesis which is 30–40% of that possible in the open, provides sufficient supply of carbohydrates or the basic functions of the moss species studied. Pleurozium schreberi and Dicranum polysetum seem to have greater light requirements than Hylocomnium splendens.
The PDF includes a summary in Finnish.
The photosynthetic rate of Pleurosium schreberi (Willd.), Hylocomnium splendens (Hedw.) and Dicranum undulatum (Sw.) grown in plastic containers was monitored with infrared gas analyser in open air under natural weather conditions. It proved that the photosynthetic rate of wet moss cushions was satisfactorily predicted by temperature and light intensity. In dry moss cushions this kind of model gave too high an estimate for photosynthetic rate. Water requirements of each moss species were found to be moderate, and water content of moss cushions limited photosynthetic rate only under serious water deficiency.
The PDF includes a summary in Finnish.